Skip to main content
Log in

Sensitivity analysis of censoring schemes in progressively type-II right censored order statistics

  • Theoretical Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

We study the sensitivity of some optimality criteria based on progressively type-II right censored order statistics scheme changes and explain how the sensitivity analysis helps to find the optimal censoring schemes. We find that determining an optimal censoring plan among a class of one-step censoring schemes is not always recommended. We consider optimality criteria as the model output of a sensitivity analysis problem and quantify how this model depends on its input factor and censoring scheme, using local and global sensitivity methods. Finally, we propose a simple method to find the optimal scheme among all possible censoring schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. \(0^{*k}\) means k times zero.

References

  1. Balakrishnan, N.: Approximate maximum likelihood estimation of the mean and standard deviation of the normal distribution based on type II censored samples. J. Stat. Comput. Simul. 32, 137–148 (1989)

    Article  Google Scholar 

  2. Balakrishnan, N., Aggarwala, R.: Progressive Censoring: Theory, Methods, and Applications. Springer, Berlin (2000)

    Book  Google Scholar 

  3. Balakrishnan, N., Burkschat, M., Cramer, E., Hofmann, G.: Fisher information based progressive censoring plans. Comput. Stat. Data Anal. 53, 366–380 (2008)

    Article  Google Scholar 

  4. Borgonovo, E.: Sensitivity analysis: An Introduction for the Management Scientist. Springer, New York (2019)

    Google Scholar 

  5. Borgonovo, E., Plischke, E.: Sensitivity analysis: A review of recent advances. Eur. J. Oper. Res. 248, 869–887 (2016)

    Article  Google Scholar 

  6. Burkschat, M.: On optimality of extremal schemes in progressive type II censoring. J. Stat. Plan. Inference 138, 1647–1659 (2008)

    Article  Google Scholar 

  7. Chatterjee, K., Kar, S.: Multi-criteria analysis of supply chain risk management using interval valued fuzzy TOPSIS. OPSEARCH 53, 474–499 (2016)

    Article  Google Scholar 

  8. Dahmen, K., Burkschat, M., Cramer, E.: A-and D-optimal progressive type-II censoring designs based on Fisher information. J. Stat. Comput. Simul. 82, 879–905 (2012)

    Article  Google Scholar 

  9. El-Din, M.M.M., Shafay, A.R.: One- and two-sample Bayesian prediction intervals based on progressively type-II censored data. Stat. Pap. 54, 287–307 (2013)

    Article  Google Scholar 

  10. Fernández, A.J.: Computing optimal confidence sets for Pareto models under progressive censoring. J. Comput. Appl. Math. 258, 168–180 (2014)

    Article  Google Scholar 

  11. Johnson, N.L., Kotz, S., Balakrishnan, N.: Discrete Multivariate Distributions. Wiley, New York (1997)

    Google Scholar 

  12. Kafa, N., Hani, Y., El Mhamedi, A.: Evaluating and selecting partners in sustainable supply chain network: a comparative analysis of combined fuzzy multi-criteria approaches. OPSEARCH 55, 14–49 (2018)

    Article  Google Scholar 

  13. Kamps, U., Cramer, E.: On distributions of generalized order statistics. Statistics 35, 269–280 (2001)

    Article  Google Scholar 

  14. Kim, C., Han, K.: Estimation of the scale parameter of the half-logistic distribution under progressively type-II censored sample. Stat. Pap. 51, 375–387 (2010)

    Article  Google Scholar 

  15. Kotb, M.S., Raqab, M.Z.: Statistical inference for modified Weibull distribution based on progressively type-II censored data. Math. Comput. Simul. 162, 233–248 (2019)

    Article  Google Scholar 

  16. Kucherenko, S., Song, S., Wang, L.: Quantile based global sensitivity measures. Reliab. Eng. Syst. Saf. 185, 35–48 (2019)

    Article  Google Scholar 

  17. Mahmoud, M.A.E., Yhiea, N.M., El-Said, S.M.: Estimation of parameters for the exponentiated Pareto distribution based on progressively type-II right censored data. J. Egypt. Math. Soc. 24, 431–436 (2016)

    Article  Google Scholar 

  18. Nath, S., Sarkar, B.: Decision system framework for performance evaluation of advanced manufacturing technology under fuzzy environment. OPSEARCH 55, 703–720 (2018)

    Article  Google Scholar 

  19. Ng, H.K.T., Kınac, I., Kuş, C., Chan, P.S.: Optimal experimental plan for multi-level stress testing with Weibull regression under progressive type-ii extremal censoring. Commun. Stat. Simulat. Comput. 46, 2611–2637 (2017)

    Article  Google Scholar 

  20. Ng, H.K.T., Chan, P.S., Balakrishnan, N.: Optimal progressive censoring plans for the Weibull distribution. Technometrics 46, 470–481 (2004)

    Article  Google Scholar 

  21. Pradhan, B., Kundu, D.: Inference and optimal censoring schemes for progressively censored Birnbaum–Saunders distribution. J. Stat. Plan. Inference 143, 1098–1108 (2013)

    Article  Google Scholar 

  22. Priyan, S., Manivannan, P.: Optimal inventory modeling of supply chain system involving quality inspection errors and fuzzy defective rate. OPSEARCH 54, 21–43 (2017)

    Article  Google Scholar 

  23. Ridolfi, G., Mooij, E.: Regression-Based Sensitivity Analysis and Robust Design. Springer, Cham (2016)

    Book  Google Scholar 

  24. Sadeghi, J., Haapala, K.R.: Optimizing a sustainable logistics problem in a renewable energy network using agenetic algorithm. OPSEARCH 56, 73–90 (2019)

    Article  Google Scholar 

  25. Salemi, U.H., Rezaei, S., Nadarajah, S.: A-optimal and D-optimal censoring plans in progressively type-II right censored order statistics. Stat. Pap. (2017). https://doi.org/10.1007/s00362-017-0877-9

    Article  Google Scholar 

  26. Salemi, U.H., Rezaei, S., Si, Y., Nadarajah, S.: On optimal progressive censoring schemes for normal distribution. Ann. Data Sci. 5, 637–658 (2018)

    Article  Google Scholar 

  27. Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M.: Sensitivity analysis in practice: A guide to assessing scientific models. Wiley, Hoboken (2004)

    Google Scholar 

  28. Singh, S., Tripathi, Y.M., Wu, S.J.: On estimating parameters of a progressively censored lognormal distribution. J. Stat. Comput. Simul. 85, 1071–1089 (2015)

    Article  Google Scholar 

  29. Sobol, I.M., Kucherenko, S.S.: Global sensitivity indices for nonlinear mathematical models. Wilmott Mag. 1, 56–61 (2005)

    Article  Google Scholar 

  30. Vishwanath, S., Kundu, D.: Bayesian inference and optimal censoring scheme under progressive censoring. In: Ram, M., Davim, J.P. (eds.) Advances in Reliability and System Engineering, pp. 239–253. Springer, Cham (2017)

    Chapter  Google Scholar 

  31. Volterman, W., Davies, K.F., Balakrishnan, N.: Pitman closeness as a criterion for the determination of the optimal progressive censoring scheme. Stat. Methodol. 9, 563–572 (2012)

    Article  Google Scholar 

  32. Wang, L.: Optimal interval estimation for a family of lower truncated distribution under progressive censoring. J. Comput. Appl. Math. 287, 67–77 (2015)

    Article  Google Scholar 

  33. Zheng, G., Park, S.: On the Fisher information in multiply censored and progressively censored data. Commun. Stat. Theory Methods 33, 1821–1835 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editor and the two referees for careful reading and for their comments which greatly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saralees Nadarajah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

For the purpose of providing explicit estimators, we use the method purposed by Balakrishnan [1]. We present an approximated maximum likelihood estimation. The likelihood function based on the progressively censored sample upon denoting \(Z^{{\mathcal {R}}}_{i:m:n}={\left( X^{{\mathcal {R}}}_{i:m:n}-\mu \right) }/{\sigma }\), can be written down as

$$\begin{aligned} \displaystyle L={\sigma }^{-m}C\prod ^m_{i=1} {f\left( z_{i:m:n}\right) {\left\{ 1 - F \left( z_{i:m:n}\right) \right\} }^{R_i}} \end{aligned}$$

for \(z_{1:m:n}<\cdots <z_{m:m:n}\), where f(z) and F(z) denote the density and distribution functions of a standard normal random variable. Now by realizing that \(f^{'}(z)=-zf(z)\) we obtain the likelihood equations for \(\mu \) and \(\sigma \) as

$$\begin{aligned} \displaystyle \frac{\partial {\ln (L)}}{\partial \mu }= \frac{1}{\sigma }\left( \sum ^m_{i=1}{z_{i:m:n}}+ \sum ^m_{i=1}{R_i\frac{f\left( z_{i:m:n}\right) }{1-F \left( z_{i:m:n}\right) }} \right) =0 \end{aligned}$$
(9)

and

$$\begin{aligned} \displaystyle \frac{\partial {\ln (L)}}{\partial \sigma }= -\frac{1}{\sigma }\left( m-\sum ^m_{i=1}{z^2_{i:m:n}}- \sum ^m_{i=1}{R_iz_{i:m:n} \frac{f\left( z_{i:m:n}\right) }{1-F\left( z_{i:m:n}\right) }} \right) =0. \end{aligned}$$
(10)

The likelihood equations (9) and (10) do not admit explicit solutions except in the complete sample case. But by expanding \({f\left( z_{i:m:n}\right) }/{\left\{ 1 - F\left( z_{i:m:n}\right) \right\} }\) in a Taylor series around the points \({\zeta }_{i:m:n}=F^{-1}\left( p_{i:m:n} \right) \), we can approximate

$$\begin{aligned} \displaystyle \frac{f\left( z_{i:m:n}\right) }{1-F\left( z_{i:m:n}\right) } \simeq {\gamma }_i+{\delta }_iz_{i:m:n}, \end{aligned}$$
(11)

where

$$\begin{aligned}&\displaystyle p_{r:m:n}=1-\prod ^m_{i=m-r+1}{\frac{i+R_{m-i+1}+ \cdots +R_m}{i+1+R_{m-i+1}+\cdots +R_m}}, \\&\quad \displaystyle \gamma _i=\frac{f\left( {\zeta }_{i:m:n}\right) }{1-p_{i:m:n}} \left\{ 1-\frac{{\zeta }_{i:m:n}f\left( {\zeta }_{i:m:n}\right) }{1-p_{i:m:n}}+ {\zeta }^2_{i:m:n}\right\} \end{aligned}$$

and

$$\begin{aligned} \displaystyle \delta _i=\frac{f\left( {\zeta }_{i:m:n}\right) }{{\left( 1-p_{i:m:n}\right) }^2} \left\{ f\left( {\zeta }_{i:m:n}\right) -{\zeta }_{i:m:n}\left( 1-p_{i:m:n}\right) \right\} \end{aligned}$$

for \(i=1,2,\ldots , m\).

It is easy to see \({\delta }_i>0\) whenever \({\zeta }_{i:m:n}\le 0\), \(i=1,2, \ldots , m\). Also when \(0<{\zeta }_{i:m:n}<h_2\)

$$\begin{aligned}&\displaystyle \left| {\zeta }_{i:m:n}\left( 1-p_{i:m:n}\right) \right| = {\zeta }_{i:m:n}\left\{ 1-F\left( {\zeta }_{i:m:n}\right) \right\} = {\zeta }_{i:m:n}\int ^{h_2}_{{\zeta }_{i:m:n}}{f(t)}dt\\&\quad \le \int ^{h_2}_{{\zeta }_{i:m:n}}{xf(t)}dt= f\left( {\zeta }_{i:m:n}\right) - f\left( h_2\right) \le f\left( {\zeta }_{i:m:n}\right) \end{aligned}$$

and consequently \({\delta }_i>0\), \(i=1,2,\ldots , m\).

By using (11), (9) and (10), we obtain

$$\begin{aligned} \displaystyle \frac{\partial {\ln (L)}}{\partial \mu }\simeq \frac{\partial {\ln \left( L^*\right) }}{\partial \mu }= \frac{1}{\sigma }\left\{ \sum ^m_{i=1}{R_i{\gamma }_i}+ \sum ^m_{i=1}{\left( 1+{R_i\delta }_i\right) z_{i:m:n}}\right\} =0 \end{aligned}$$
(12)

and

$$\begin{aligned} \displaystyle \frac{\partial {\ln (L)}}{\partial \sigma }\simeq \frac{\partial {\ln \left( L^*\right) }}{\partial \sigma }= -\frac{1}{\sigma } \left( m-\sum ^m_{i=1}{R_i{\gamma }_iz_{i:m:n}}- \sum ^m_{i=1}{\left( 1+{R_i\delta }_i\right) z^2_{i:m:n}}\right) =0. \end{aligned}$$
(13)

Upon solving (12) and (13), we derive the approximate maximum likelihood estimators of \(\mu \) and \(\sigma \) as

$$\begin{aligned} \displaystyle {{\widehat{\mu }}}^*=\frac{{{\widehat{\sigma }}}^* \sum ^m_{i=1}{R_i{\gamma }_i}}{\sum ^m_{i=1}{\left( 1+{R_i\delta }_i\right) }}+ \frac{\sum ^m_{i=1}{\left( 1+{R_i\delta }_i\right) X^{{\mathcal {R}}}_{i:m:n}}}{\sum ^m_{i=1}{\left( 1+{R_i\delta }_i\right) }} \end{aligned}$$
(14)

and

$$\begin{aligned} \displaystyle {{\widehat{\sigma }}}^*=\frac{-B+\sqrt{B^2-4AC}}{2A}, \end{aligned}$$

where

$$\begin{aligned}&\displaystyle a = m\sum ^m_{i=1}{\left( 1+{R_i\delta }_i\right) }, \\&\displaystyle B=\left\{ \sum ^m_{i=1}{R_i{\gamma }_i}\right\} \left\{ \sum ^m_{i=1}{\left( 1+{R_i\delta }_i\right) X^{{\mathcal {R}}}_{i:m:n}}\right\} - \left\{ \sum ^m_{i=1}{R_i{\gamma }_i X^{{\mathcal {R}}}_{i:m:n}}\right\} \left\{ \sum ^m_{i=1}{\left( 1+{R_i\delta }_i\right) }\right\} \end{aligned}$$

and

$$\begin{aligned} \displaystyle C=\left\{ \sum ^m_{i=1}{\left( 1+{R_i\delta }_i\right) X^{{\mathcal {R}}}_{i:m:n}}\right\} ^2 - \left\{ \sum ^m_{i=1}{\left( 1+{R_i\delta }_i\right) }\right\} \left\{ \sum ^m_{i=1}{\left( 1+{R_i\delta }_i\right) X_{i:m:n}^{2{\mathcal {R}}}}\right\} . \end{aligned}$$

It is important to mention here that upon solving (13) we obtain a quadratic equation in \(\sigma \) which has two roots. However, one of them drops out.

The conditional bias of \({{\widehat{\mu }}}^*\) can be computed exactly from (14). But it is difficult to determine the conditional bias of \({{\widehat{\sigma }}}^*\) exactly. However, the conditional bias of \({{\widehat{\sigma }}}^*\) may be evaluated approximately by

$$\begin{aligned} \displaystyle {E\left\{ \frac{\partial {\ln \left( L^*\right) }}{\partial \sigma }\right\} }/ {E\left\{ -\frac{{\partial }^2{\ln \left( L^*\right) }}{\partial {\sigma }^2}\right\} }; \end{aligned}$$

see Balakrishnan [1].

In addition, we obtain the approximated Fisher information from (12) and (13) as

$$\begin{aligned} \displaystyle I=\left[ \begin{array}{ll} \displaystyle I_{11}&{}I_{12} \\ \displaystyle I_{12}&{}I_{22} \end{array} \right] , \end{aligned}$$

where

$$\begin{aligned} \displaystyle I_{12}=E\left\{ -\frac{{\partial }^2{\ln \left( L^*\right) }}{\partial \mu \partial \sigma }\right\} = V_1\left\{ \frac{\sum ^m_{i=1}{\left( 1+{R_i\delta }_i\right) }}{{\sigma }^2}\right\} = V_1E\left\{ -\frac{{\partial }^2{\ln \left( L^*\right) }}{\partial {\mu }^2}\right\} = V_1 I_{11} \end{aligned}$$

and

$$\begin{aligned} \displaystyle I_{22} = E\left\{ -\frac{{\partial }^2{\ln \left( L^*\right) }}{\partial {\sigma }^2}\right\} = V_2\left\{ \frac{\sum ^m_{i=1}{\left( 1+{R_i\delta }_i\right) }}{{\sigma }^2}\right\} = V_2E\left\{ -\frac{{\partial }^2{\ln \left( L^*\right) }}{\partial {\mu }^2}\right\} = V_2 I_{11}, \end{aligned}$$

where

$$\begin{aligned} \displaystyle V_1=\frac{\sum ^m_{i=1}{R_i{\gamma }_i}}{\sum ^m_{i=1}{ \left( 1+{R_i\delta }_i\right) }}+ 2\left[ \frac{\sum ^m_{i=1}{\left( 1+{R_i\delta }_i\right) E\left( Z_{i:m:n}\right) }}{\sum ^m_{i=1}{\left( 1+{R_i\delta }_i\right) }}\right] \end{aligned}$$

and

$$\begin{aligned} \displaystyle V_2=3\left[ \frac{\sum ^m_{i=1}{\left( 1+{R_i\delta }_i\right) E\left( Z^2_{i:m:n}\right) }}{\sum ^m_{i=1}{\left( 1+{R_i\delta }_i\right) }}\right] + 2\left[ \frac{\sum ^m_{i=1}{R_i{\gamma }_iE \left( Z_{i:m:n}\right) }}{\sum ^m_{i=1}{\left( 1+{R_i\delta }_i \right) }}\right] - \frac{m}{\sum ^m_{i=1}{ \left( 1+{R_i\delta }_i\right) }}. \end{aligned}$$

It follows

$$\begin{aligned} \displaystyle Var \left( {{\widehat{\mu }}}^*\right)&= {} \frac{{\sigma }^2}{\sum ^m_{i=1}{\left( 1+{R_i\delta }_i\right) }} \left\{ \frac{V_2}{V_2-V^2_1} \right\} , \\ \displaystyle Var \left( {{\widehat{\sigma }}}^*\right)&= {} \frac{{\sigma }^2}{\sum ^m_{i=1}{\left( 1+{R_i\delta }_i\right) }} \left\{ \frac{1}{V_2-V^2_1} \right\} \end{aligned}$$

and

$$\begin{aligned} \displaystyle Cov \left( {{\widehat{\mu }}}^*, {{\widehat{\sigma }}}^*\right) = -\frac{{\sigma }^2}{\sum ^m_{i=1} {\left( 1+{R_i\delta }_i \right) }} \left\{ \frac{V_1}{V_2-V^2_1}\right\} . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salemi, U.H., Khorram, E., Si, Y. et al. Sensitivity analysis of censoring schemes in progressively type-II right censored order statistics. OPSEARCH 57, 163–189 (2020). https://doi.org/10.1007/s12597-019-00419-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12597-019-00419-7

Keywords

Navigation