Skip to main content
Log in

Performance analysis of voice over internet protocol via non Markovian loss system with preemptive priority and server break down

  • Theoretical Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

Voice over Internet Protocol (VoIP) or Internet telephony has become an evolutionary and promising technology in the area of telecommunications. Lower costs and simpler maintenance are the major reasons of its increasing popularity. However, the network is inherently unreliable and highly challenged when it comes to quality of service (QoS). The VoIP system is primarily a multi-server system which may also face failures. Hence, in order to study the performance of VoIP, it is proposed to develop a multi-server, loss system with general service times, server breakdown and repair together with preemptive priority queuing discipline, for two types of customers: high priority and low priority. The customers are served immediately if the server is available. However, if all servers are busy, then on the arrival of a high priority customer, the service of a low priority customer is preempted. The steady state distribution of such underlying system is obtained together with the performance measures. A numerical illustration of the obtained results is also presented graphically. The results are validated using simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Osogami, T., Balter, M.-H.: Multi-server queuing systems with multiple priority classes. Queuing Syst. 51, 331–360 (2005)

    Article  Google Scholar 

  2. Blondia, C.: A finite capacity multi-queuing system with priorities and with repeated server vacations. Queuing Syst. 5, 313–330 (1989)

    Article  Google Scholar 

  3. Segal, M.: A multi-server system with preemptive priorities. Oper. Res. 18, 316–323 (1970)

    Article  Google Scholar 

  4. Gazdzicki, P., Lambadaris, I., Mazumdar, R.R.: Blocking probabilities for large multirate Erlang loss systems. Adv. Appl. Probab. 25(4), 997–1009 (1993)

    Article  Google Scholar 

  5. Tian, N., Liu, M., Ma, Z., Xu, X. Performance analysis of discrete-time Erlang loss system. In: Proc. of the South-eastern Symposium on System Theory: 54–57. (2006)

  6. Fakinos, D.: On the M/G/k group arrival loss system. Eur. J. Oper. Res. 44, 75–83 (1990)

    Article  Google Scholar 

  7. Sharma, V., Virtamo, J.T.: A finite buffer queue with priorities. Perform. Eval. 47, 1–22 (2002)

    Article  Google Scholar 

  8. Takagi, H., Kodera, Y.: Analysis of preemptive loss priority queues with preemption distance. Queuing Syst. 22, 367–381 (1996)

    Article  Google Scholar 

  9. Choudhury, G., Tadj, L.: An M/G/1 queue with two phases of service subject to the server breakdown and delayed repair. Appl. Math. Model. 33, 2699–2709 (2009)

    Article  Google Scholar 

  10. Fakinos, D.: The M/G/k loss system with servers subject to breakdown. J. Appl. Prob. 20, 706–712 (1983)

    Article  Google Scholar 

  11. Erlander, S.: A note on telephone traffic with losses. J. App. Prob. 4(2), 406–408 (1967)

    Article  Google Scholar 

  12. Galmés, S., Puigjaner, R.: Computing call dropping and waiting probabilities in LEO satellite systems for voice communications. Lect. Notes. Comput. Sc. 3042, 1240–1251 (2004)

    Article  Google Scholar 

  13. Takahashi, Y., Shikata, Y., Okada, K., Komatsu, N.: Multi-server loss system with T-limited service for traffic control in information networks. In: Proc. of Int. Conf. on Computer Communications and Networks: 491–496 (2007)

  14. Tijms, H.C., Van Hoorn, M.H., Federgruen, A.: Approximations for the steady state probabilities in the M/G/c queue. Adv. Appl. Probab. 13(1), 186–206 (1981)

    Article  Google Scholar 

  15. Cox, D.R.: The analyses of non-Markovian stochastic processes by the inclusion of supplementary variables. Proc. Cambridge Philos. Soc. 51(3), 433–441 (1965)

    Article  Google Scholar 

  16. Lee, H.W., Lee, S.S., Park, J.O., Chae, K.C.: Analysis of the M X/G/1 queue with N-policy and multiple vacations. J. Appl. Prob. 31, 476–496 (1994)

    Article  Google Scholar 

  17. Lee, S.S., Lee, H.W., Yoon, S.H., Chae, K.C.: Batch arrival queue with N-Policy and single vacation. Comput. Ops. Res. 22, 173–189 (1995)

    Article  Google Scholar 

  18. MacGregor Smith, J.: M/G/c/K blocking probability models and system performance. Perform. Eval. 52, 237–267 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dharmaraja.

Appendix I

Appendix I

1.1 Proof of Theorem 3.2.1

By substituting \( {\theta_1}={\lambda_2}+\alpha +{\lambda_1}\left( {1-zk!} \right)-1, \) the LHS of Eq. (13) vanishes and we have

$$ \begin{array}{*{20}c} {Q_{k,h}^{*}\left( {0;z} \right)\left( {1-{\lambda_1}zS^{*}\left( {{\lambda_2}+\alpha +{\lambda_1}\left( {1-zk!} \right)-1} \right)-\frac{2}{z}} \right)=\frac{{\alpha \left( {k+1} \right)!}}{z}Q_{k+1,h}^{*}\left( {0;z} \right)+} \hfill \\ {\beta \left( {k-1} \right)!P_{k-1,h}^{*}\left( {{\lambda_2}+\alpha +{\lambda_1}\left( {1-zk!} \right)-1;z} \right)+{\lambda_1}{P_{k,h }}(z)} \hfill \\ {h=1} \hfill \\ \end{array} $$
(A1)

Substituting this in Eq. (12) and simplifying, we get

$$ {P_{k,h }}(z)=\frac{{\left( {\alpha \left( {k+1} \right)!Q_{k+1,h}^{*}\left( {0;z} \right)+z\ \beta \left( {k-1} \right)!P_{k-1,h}^{*}\left( {{\lambda_2}+\alpha +{\lambda_1}\left( {1-zk!} \right)-1;z} \right)+z\beta {P_{k-1,h }}\left( {0;z} \right)} \right){S^{*}}\left( {{\theta_1}} \right)}}{{\left( {{\lambda_1}+{\lambda_2}+\alpha } \right)\left( {z-{\lambda_1}{z^2}{S^{*}}\left( {{\lambda_2}+\alpha +{\lambda_1}\left( {1-zk!} \right)-1} \right)-2} \right)-{\lambda_1}z{S^{*}}\left( {{\theta_1}} \right)}} $$
(A2)

1.2 Proof of Theorem 3.2.2

By substituting \( {\nu_1}={\lambda_1}+\alpha +{\lambda_2}\left( {1-wk!-\left( {k-1} \right)!} \right)-1, \) the LHS of Eq. (17) vanishes and we have

$$ \begin{array}{*{20}c} {Q_{k,h}^{*}\left( {0;w} \right)\left( {1-{\lambda_2}wS^{*}\left( {{\lambda_1}+\alpha +{\lambda_2}\left( {1-wk!-\left( {k-1} \right)!} \right)-1} \right)-\frac{2}{w}} \right)=\frac{{\alpha \left( {k+1} \right)!}}{w}Q_{k+1,h}^{*}\left( {0;w} \right)+} \hfill \\ {\beta \left( {k-1} \right)!P_{k-1,h}^{*}\left( {{\lambda_1}+\alpha +{\lambda_2}\left( {1-wk!} \right)-1;w} \right)+{\lambda_2}{P_{k,h }}(w)\quad \quad h=2} \hfill \\ \end{array} $$
(A3)

Substituting this in Eq. (16) and simplifying, we get

$$ {P_{k,h }}(w)=\frac{{\left( {\alpha \left( {k+1} \right)!Q_{k+1,h}^{*}\left( {0;w} \right)+w\ \beta \left( {k-1} \right)!P_{k-1,h}^{*}\left( {{\lambda_2}\left( {1-wk!} \right)+\alpha +{\lambda_1}-1;w} \right)+w\beta {P_{k-1,h }}\left( {0;w} \right)} \right){S^{*}}\left( {{\nu_1}} \right)}}{{\left( {{\lambda_1}+{\lambda_2}+\alpha } \right)\left( {w-{\lambda_2}{w^2}{S^{*}}\left( {\left( {{\lambda_2}} \right.\left( {1-wk!} \right.-\left( {k-1} \right)!} \right)+\alpha +\left. {{\lambda_1}-1} \right)-2} \right)-{\lambda_2}w{S^{*}}\left( {{v_1}} \right)}} $$
(A4)

1.3 Proof of Theorem 3.2.3

By substituting \( {\theta_i}={\lambda_2}+\alpha +{\lambda_1}\left( {1-\frac{{z\left( {k-n+1} \right)!}}{n! }} \right)-\frac{1}{n! } \) for i = 1,2…,n, the LHS of Eq. (14) vanishes and we have

$$ \begin{array}{*{20}c} \begin{array}{*{20}c} {Q_{k,h}^{*}\left( {{\lambda_2}+\alpha +{\lambda_1}\left( {1-\frac{{z\left( {k-n+1} \right)!}}{n! }} \right)-\frac{1}{n! },\ldots,{\lambda_2}+\alpha +{\lambda_1}\left( {1-\frac{{z\left( {k-n+1} \right)!}}{n! }} \right)-\frac{1}{n! };z} \right)=} \hfill \\ {\frac{{\left( {\begin{array}{*{20}c} {\frac{{\alpha \left( {k+1} \right)!}}{zn! }Q_{k+1,h}^{*}\left( {{\lambda_2}+\alpha +{\lambda_1}\left( {1-\frac{{z\left( {k-n+1} \right)!}}{n! }} \right)-\frac{1}{n! },\ldots,{\lambda_2}+\alpha +{\lambda_1}\left( {1-\frac{{z\left( {k-n+1} \right)!}}{n! }} \right)-\frac{1}{n! };z} \right)+} \hfill \\ {\frac{{\beta \left( {k-1} \right)!}}{n! }P_{k-1,h}^{*}\left( {{\lambda_2}+\alpha +{\lambda_1}\left( {1-\frac{{z\left( {k-n+1} \right)!}}{n! }} \right)-\frac{1}{n! },\ldots,{\lambda_2}+\alpha +{\lambda_1}\left( {1-\frac{{z\left( {k-n+1} \right)!}}{n! }} \right)-\frac{1}{n! };z} \right)} \hfill \\ \end{array}} \right)}}{{1-\frac{{{\lambda_1}z}}{n}S^{*}\left( {{\lambda_2}+\alpha +{\lambda_1}\left( {1-\frac{{z\left( {k-n+1} \right)!}}{n! }} \right)-\frac{1}{n! }} \right)-\frac{{\left( {n+1} \right)}}{z}}}} \hfill \\ {2\leq k\leq C-1\quad, \quad 1\leq i\leq n,h=1} \hfill \\ \end{array} \hfill \\ \kern28.5em \hfill \\\end{array} $$
(A5)

which is the another expression of \( P_{k,h}^{*}\left( {{\theta_1},{\theta_2},\ldots,{\theta_n};z} \right),\;h=1, \) where \( {\theta_i}={\lambda_2}+\alpha +{\lambda_1}\left( {1-\frac{{z\left( {k-n+1} \right)!}}{n! }} \right)-\frac{1}{n! } \) in terms of \( Q_{k,h}^{*}\left( {{\theta_1},{\theta_2},\ldots,{\theta_{i-1 }},{\theta_{i+1 }},\ldots,{\theta_n};z} \right) \), for type 1 customers.

Differentiating both sides of (13), (r + 1) times with respect to θ 1 and evaluating at \( {\theta_1}={\lambda_2}+\alpha +{\lambda_1}\left( {1-zk!} \right)-1 \) yields for r = 0, 1, 2…,:

$$ \left( {r+1} \right)P_{k,h}^{*(r)}\left( {{\theta_1};z} \right)=-{\lambda_1}z{S^{{*\left( {(r+1} \right)}}}\left( {{\theta_1}} \right)Q_{k,h}^{*}\left( {0;z} \right)-\beta \left( {k-1} \right)!P_{k-1,h}^{{*\left( {r+1} \right)}}\left( {{\theta_1};z} \right),\;h=1,n=1 $$
(A6)

By adding equations (13) and (14), and differentiating both sides, r + 1 times w.r.t. θ i for i = 1,2,…,n ≤ k, and evaluating at \( {\theta_i}={\lambda_2}+\alpha +{\lambda_1}\left( {1-\frac{{z\left( {k-n+1} \right)!}}{n! }} \right)-\frac{1}{n! } \) yields for r = 0, 1, 2…,:

$$ \begin{array}{*{20}c} {\left( {r + 1} \right)P_{{k,\;h}}^{*(r)}\left( {{\theta_1},\;{\theta_2},\ldots,\;{\theta_n};\;z} \right) = -\sum\limits_{{i = 1}}^n {\frac{{{\lambda_1}z}}{n}{S^{{*\left( {()} \right)}}}\left( {{\theta_i}} \right)} Q_{{k,\,h}}^{*}\left( {{\theta_1},\;{\theta_2},\ldots,\;{\theta_{{i - 1}}},\;{\theta_{{i + 1}}}\ldots ..{\theta_n};\;z} \right) + } \hfill \\ {\sum\limits_{{i = 1}}^n {\left( {1 - \frac{{{\lambda_1}z}}{n}S*\left( {{\theta_i}} \right) - \frac{{\left( {n + 1} \right)}}{z}} \right)Q_{{k,\;h}}^{{*\left( {r + 1} \right)}}\left( {{\theta_1},\;{\theta_2},\ldots,\;{\theta_{{i - 1}}},\;{\theta_{{i + 1}}}\ldots ..{\theta_n};\;z} \right)} } \hfill \\ { - \frac{{\alpha \left( {k + 1} \right)!}}{n!z }Q_{{k + 1,\;h}}^{{*\left( {r + 1} \right)}}\left( {{\theta_1},\;{\theta_2},\ldots,\;{\theta_{{i - 1}}},\;{\theta_{{i + 1}}},\ldots,\;{\theta_n};\;z} \right) - \frac{{\beta (k - 1)!}}{n! }P_{{k - 1,\;h}}^{{*(r + 1)}}\left( {{\theta_1},\;{\theta_2},\ldots,\;{\theta_n};\;z} \right),\;h = 1} \hfill \\ \end{array} $$
(A7)

By starting with r = 0 in the Eq. (A7) and successive substitution of the Eq. (A7), with r = 1, 2,…,k we get

$$ \begin{array}{*{20}c} {P_{k,h}^{*}\left( {{\theta_1},{\theta_2},\ldots,{\theta_n};z} \right)=P_{k,h}^{*(0)}\left( {{\theta_1},{\theta_2},\ldots,{\theta_n};z} \right)=} \hfill \\ {\sum\limits_{l=1}^k {\tfrac{{{(-1)^{k+1-l }}{\beta^{k-1 }}}}{{n\;!(1.2\ldots (k+1-l))}}} \sum\limits_{i=1}^n {\frac{{{\lambda_1}z}}{n}{S^{*(k+1-l) }}\left( {{\theta_i}} \right)} Q_{l,h}^{*}({\theta_1},{\theta_2},\ldots,{\theta_{i-1 }},{\theta_{i+1 }},\ldots,{\theta_n}; z\;)-} \hfill \\ {\ \sum\limits_{l=1}^k {\tfrac{{{(-1)^{k+1-l }}{\beta^{k-1 }}}}{{n\;!(1.2\ldots (k+1-l))}}} \sum\limits_{i=1}^n {\left( {1-\frac{{{\lambda_1}z}}{n}{S^{*}}\left( {{\theta_i}} \right)-\frac{(n+1) }{z}} \right)Q_{l,h}^{*(r+1) }({\theta_1},{\theta_2},\ldots,{\theta_{i-1 }},{\theta_{i+1 }},\ldots,{\theta_n}; z\;)} } \hfill \\ { - \sum\limits_{l=1}^{k+1 } {\tfrac{{{(-1)^{k+1-l }}{\beta^{k-1 }}}}{{n\;!(1.2\ldots (k+1-l))}}} \sum\limits_{i=1}^n {\frac{{l\;!\alpha }}{{z\;n\;!}}Q_{l,h}^{*(k+1-l }({\theta_1},{\theta_2},\ldots,{\theta_{i-1 }},{\theta_{i+1 }},\ldots,{\theta_n}; z\;)} \kern0.75em ,\ h=1,\ 1\leq k\leq C} \hfill \\ \end{array} $$
(A8)

By substituting (A8) in (A5), we have the following recursive form about the boundary function

$$ \begin{array}{*{20}c} {Q_{k,h}^{*}({\theta_1},{\theta_2},\ldots,{\theta_{i-1 }},{\theta_{i+1 }},\ldots,{\theta_n}; z\;),\kern1em h=1} \hfill \\ \begin{array}{*{20}c} Q_{k,h}^{*}({\theta_1},{\theta_2},\ldots,{\theta_{i-1 }},{\theta_{i+1 }},\ldots,{\theta_n}; z\;)=\left\{ \begin{array}{*{20}c} \frac{{\frac{{\alpha 2\;!}}{{z\;}}Q_{2,h}^{*}(0;z\;)-{\lambda_1}{P_{1,h }}(z)}}{{1-{\lambda_1}zS*\left( {{\theta_i}} \right)-\frac{2}{z}}}\kern0.75em ,\ k=1,h=1\kern1em \hfill \\ \frac{{\left( \begin{array}{*{20}c} \frac{{\alpha (k+1)\;!}}{{z\;n\;!}}Q_{k+1,h}^{*}({\theta_1},{\theta_2},\ldots,{\theta_{i-1 }},{\theta_{i+1 }},\ldots,{\theta_n}; z\;) + \hfill \\ \frac{{\beta (k-1)\;!}}{{n\;!}}P_{k-1,h}^{*}({\theta_1},{\theta_2},\ldots,{\theta_n}; z\;) \hfill \\\end{array} \right)}}{{1-\frac{{{\lambda_1}z}}{n}S^{*}\left( {{\theta_i}} \right)-\frac{(n+1) }{z}}}\kern0.5em ,\ 2\leq k\leq C-1,\ 1\leq i\leq n,\,h=1 \hfill \\ \frac{{\frac{{\beta (C-1)\;!}}{{C\;!}}P_{C-1,h}^{*}({\theta_1},{\theta_2},\ldots,{\theta_C}; z\;)}}{{1-\frac{{{\lambda_1}z}}{C}S^{*}\left( {{\theta_C}} \right)}}\kern0.75em ,\ k=C,h=1 \hfill \\\end{array} \right.\ \hfill \\ \kern20.75em \hfill \\\end{array} \hfill \\ \end{array} $$

From the above equations, we get

$$ \begin{array}{*{20}c} {Q_{2,h}^{*}(0;z) = \frac{\mathrm{z}}{{\alpha 2\;!}}\left( {Q_{1,h}^{*}(0;z)\left( {1 - {\lambda_1}zS^{*}\,\left( {{\theta_1}} \right) - \frac{2}{z}} \right) - {\lambda_1}{P_{{1,\;h}}}(z)} \right),\;\;\;k = 1,\;h = 1} \hfill \\ \begin{array}{*{20}c} Q_{{k + 1,\;h}}^{*}({\theta_1},\;{\theta_2},\ldots,\;{\theta_{{i - 1}}},\;{\theta_{{i + 1}}},\ldots,\;{\theta_n};z) = \frac{{z\;n\;!}}{{\alpha (k + 1)\;!}}\left[ \begin{array}{*{20}c} Q_{{k,\;h}}^{*}({\theta_1},\;{\theta_2},\ldots,{\theta_{{i - 1}}},\;{\theta_{{i + 1}}},\ldots,\;{\theta_n};\;z)\left( {1 - \frac{{{\lambda_1}z}}{n}S^{*}\,\left( {{\theta_i}} \right) - \frac{{(n + 1)}}{z}} \right)- \hfill \\ \kern7em \frac{{\beta (k - 1)\;!}}{{n\;!}}P_{{k - 1,\;h}}^{*}({\theta_1},\;{\theta_2},\ldots,\;{\theta_n};\;z) \hfill \\\end{array} \right] \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;2\,\leq\,k\,\leq\,C - 1,\;1\,\leq\,i\,\leq\,n,\;h = 1 \hfill \\ Q_{{k,\;h}}^{*}({\theta_1},\;{\theta_2},\ldots,\;{\theta_{{i - 1}}},\;{\theta_{{i + 1}}},\ldots,\;{\theta_n};\;z) = \frac{{\frac{{\beta (C - 1)\;!}}{{C\;!}}P_{{C - 1,\;h}}^{*}({\theta_1},\;{\theta_2},\ldots,\;{\theta_C};\;z)}}{{1 - \frac{{{\lambda_1}z}}{C}S^{*}\left( {{\theta_C}} \right)}},\;\ k = C,\;h = 1 \hfill \\\end{array} \hfill \\ {} \hfill \\ \end{array} $$
(A9)

where \( {\theta_i} = {\lambda_2} + \alpha + {\lambda_1}\left( {1 - \frac{{z(k - n + 1)!}}{\mathrm{n}!}} \right) - \frac{1}{n! } \) and \( P_{{k - 1,\;h}}^{*}({\theta_1},\;{\theta_2},\ldots,\;{\theta_n};\;z),\;h = 1 \) is obtained from (A8).

1.4 Proof of Theorem 3.2.4

By substituting \( {\nu_j} = {\lambda_2}\left( {1 - \frac{{(k - 1)!}}{\mathrm{m}!} - \frac{{w(k - m + 1)!}}{\mathrm{m}!}} \right) + \alpha + {\lambda_1} - \frac{1}{m! } \) , the LHS of equation (18) vanishes for j = 1,2,…,m, and we have

$$ \begin{array}{*{20}c} Q_{{k,\;h}}^{*}\left( {{\lambda_2}\left( {1 - \frac{{(k - 1)!}}{m!} - \frac{{w(k - m + 1)!}}{\mathrm{m}!}} \right) + \alpha + {\lambda_1} - \frac{1}{m! },\ldots,\;{\lambda_2}\left( {1 - \frac{{(k - 1)!}}{m!} - \frac{{w(k - m + 1)!}}{\mathrm{m}!}} \right) + \alpha + {\lambda_1} - \frac{1}{m! };\;w} \right)= \hfill \\ \kern8.25em \frac{{\left( \begin{array}{*{20}c} \frac{{\alpha (k + 1)\;!}}{{wm\;!}}Q_{{2,\;h}}^{*}\left( \begin{array}{*{20}c} {\lambda_2}\left( {1 - \frac{{(k - 1)!}}{m!} - \frac{{w(k - m + 1)!}}{\mathrm{m}!}} \right) + \alpha + {\lambda_1} - \frac{1}{m! },\ldots, \hfill \\ {\lambda_2}\left( {1 - \frac{{(k - 1)!}}{m!} - \frac{{w(k - m + 1)!}}{\mathrm{m}!}} \right) + \alpha + {\lambda_1} - \frac{1}{m! };w \hfill \\\end{array} \right) + \hfill \\ \frac{{\beta (k - 1)\;!}}{{m\;!}}P_{{k - 1,\;h}}^{*}\left( \begin{array}{*{20}c} {\lambda_2}\left( {1 - \frac{{(k - 1)!}}{m!} - \frac{{w(k - m + 1)!}}{\mathrm{m}!}} \right) + \alpha + {\lambda_{{1\,}}} - \frac{1}{m! },\ldots, \hfill \\ {\lambda_2}\left( {1 - \frac{{(k - 1)!}}{m!} - \frac{{w(k - m + 1)!}}{\mathrm{m}!}} \right) + \alpha + {\lambda_1} - \frac{1}{m! };w \hfill \\\end{array} \right) \hfill \\\end{array} \right)}}{{1 - \frac{{{\lambda_2}w}}{m}S*\left( {{\lambda_2}\left( {1 - \frac{{(k - 1)!}}{m!} - \frac{{w(k - m + 1)!}}{\mathrm{m}!}} \right) + \alpha + {\lambda_1} - \frac{1}{m! }} \right) - \frac{{(m + 1)}}{w}}} \hfill \\ \kern28.75em 2\,\leq\,k\,\leq\,C - 1,\;1\,\leq\,j\,\leq\,m,\;h = 2 \hfill \\\end{array} $$
(A10)

which is the another expression of \( P_{{k,\;h}}^{*}({\nu_1},\;{\nu_2},\ldots,\;{\nu_m};\;w),\;\;\;\;\;h = 2 \) where \( {\nu_j} = {\lambda_1} + \alpha + {\lambda_2}\left( {1 - \frac{{z(k - n + 1)!}}{\mathrm{n}!} - \frac{{(k - 1)!}}{m! }} \right) - \frac{1}{m! } \) in terms of \( Q_{{k,\,h}}^{*}({\nu_1},\;{\nu_2},\ldots,\;{\nu_{{j - 1}}},\;{\nu_{{j + 1}}},\ldots,\;{\nu_m};w) \), for type 2 customers.

By differentiating both sides of (17), \( (r+1) \) times w.r.t. \( {\nu_1} \), and evaluating at \( {\nu_1} = {\lambda_1} + \alpha + {\lambda_2}\left( {1 - wk! - (k - 1)!} \right) - 1 \) yields for \( r = 0,\;1,\;2.... \), we have

$$ (r + 1)P_{{k,\;h}}^{*(r) }({\nu_1};\;w) = - {\lambda_2}w{S^{{*(r + 1)}}}({\nu_1})Q_{{k,\;h}}^{*}(0;\;w) - \beta (k - 1)\;!P_{{k - 1,\;h}}^{{*(r + 1)}}({\nu_1};\;w),\;h = 1,\,m = 1 $$
(A11)

By adding the equations (17) and (18), and differentiating both sides , \( (r + 1) \) times w.r.t. \( {\nu_j} \) for \( j = 1,\;2,\ldots,\;m\,\leq\,k \), and evaluating at \( {\nu_j} = {\lambda_1} + \alpha + {\lambda_2}\left( {1 - \frac{{z(k - n + 1)!}}{\mathrm{n}!} - \frac{{(k - 1)!}}{m! }} \right) - \frac{1}{m! } \) yields for \( r = 0,\;1,\;2.... \),:

$$ \begin{array}{*{20}c} {(r + 1)\left( {1 + \frac{{(k - 1)!}}{m! }} \right)P_{{k,\,h}}^{*(r) }({\nu_1},\;{\nu_2},\ldots,\;{\nu_m};\;w) = - \sum\limits_{{j = 1}}^m {\frac{{{\lambda_2}w}}{m}{S^{{*(r + 1)}}}({\nu_j})} Q_{{k,\;h}}^{*}({\nu_1},\;{\nu_2},\ldots,\;{\nu_{{j - 1}}},\;{\nu_{{j + 1}}}.....{\nu_m};w) + } \\ {\sum\limits_{{j = 1}}^m {\left( {1 - \frac{{{\lambda_2}w}}{m}S*({\nu_j}) - \frac{{(m + 1)}}{w}} \right)Q_{{k,\;h}}^{{*(r + 1)}}({\nu_1},\;{\nu_2},\ldots,\;{\nu_{{j - 1}}},\;{\nu_{{j + 1}}},\ldots,\;{\nu_m};\;w)} } \\ { - \frac{{\alpha (k + 1)!}}{wm! }Q_{{k + 1,\;h}}^{{*(r + 1)}}({\nu_1},\;{\nu_2},\ldots,\;{\nu_{{j - 1}}},\;{\nu_{{j + 1}}},\ldots,\,{\nu_m};\;w) - \frac{{\beta (k - 1)!}}{m! }P_{{k - 1,\;h}}^{{*(r + 1)}}({\nu_1},\;{\nu_2},\ldots,\;{\nu_m};\;w),\;h = 2} \\ \end{array} $$
(A12)

By starting with r = 0 in the equation (A12) and successive substitution of the equation (A12), with \( r = 1,\;2,\ldots,\;k \) we get

$$ \begin{array}{*{20}c} \begin{array}{*{20}c} {P_{{k,\;h}}^{*}({\nu_1},\;{\nu_2},\ldots,\;{\nu_m};\;w) = P_{{k,\;h}}^{*(0) }({\nu_1},\;{\nu_2},\ldots,\;{\nu_m};\;w) = } \hfill \\ {\sum\limits_{{l = 1}}^k {\tfrac{{{(-1)^{{k + 1 - l}}}{\beta^{{k - 1}}}}}{{m!(1.2\ldots (k + 1 - l))}}} \sum\limits_{{j = 1}}^m {\frac{{\frac{{{\lambda_2}w}}{m}{S^{{*(k + 1 - l)}}}\left( {{\nu_j}} \right)}}{{\left( {1 + \frac{{(k - 1)!}}{m! }} \right)}}} Q_{{l,\;h}}^{*}({\nu_1},\;{\nu_2},\ldots,{\nu_{{i - 1}}},\;{\nu_{{i + 1}}},\ldots,\;{\nu_m};\;w) - } \hfill \\ {\ \sum\limits_{{l = 1}}^k {\tfrac{{{(-1)^{{k + 1 - l}}}{\beta^{{k - 1}}}}}{{m!(1.2\ldots (k + 1 - l))}}} \sum\limits_{{j = 1}}^m {\frac{{\left( {1 - \frac{{{\lambda_2}w}}{m}{S^{*}}\left( {{\nu_j}} \right) - \frac{{(m + 1)}}{w}} \right)}}{{\left( {1 + \frac{{(k - 1)!}}{m! }} \right)}}Q_{{l,\,h}}^{{*(r + 1)}}({\nu_1},\;{\nu_2},\ldots,\;{\nu_{{j - 1}}},\;{\nu_{{j + 1}}},\ldots,\;{\nu_m};\;w)} } \hfill \\ { - \sum\limits_{{l = 1}}^{{k + 1}} {\tfrac{{{(-1)^{{k + 1 - l}}}{\beta^{{k - 1}}}}}{{m!(1.2\ldots (k + 1 - l))}}} \sum\limits_{{j = 1}}^m {\frac{{\left( {\frac{{l!\alpha }}{{w\;m!}}} \right)}}{{\left( {1 + \frac{{(k - 1)!}}{m! }} \right)}}Q_{{l,\,h}}^{{*(k + 1 - l)}}({\nu_1},\;{\nu_2},\ldots,\;{\nu_{{j - 1}}},\;{\nu_{{j + 1}}},\ldots,\;{\nu_m};\;w)},\;h = 2,\;1\,\leq\,k\,\leq\,C} \hfill \\ \end{array} \hfill \\ \kern2.25em \hfill \\\end{array} $$
(A13)

By substituting (A13) in (A10), we have the following recursive form about the boundary function

$$ \begin{array}{*{20}c} {Q_{{k,\;h}}^{*}({\nu_1},\;{\nu_2},\ldots,\;{\nu_{{j - 1}}},\;{\nu_{{j + 1}}},\ldots,\;{\nu_m};\;w),\;\mathrm{h} = 2} \hfill \\ {Q_{{k,\;h}}^{*}({\nu_1},\;{\nu_2},\ldots,\;{\nu_{{j - 1}}},\;{\nu_{{j + 1}}},\ldots,\;{\nu_n};\;z) = \left\{ \begin{array}{*{20}c} \frac{{\frac{{\alpha 2!}}{w}Q_{{2,\;h}}^{*}(0;\;w) - {\lambda_2}{P_{{1,\;h}}}(w)}}{{1 - {\lambda_2}zS*\left( {{\nu_j}} \right) - \frac{2}{w}}}\kern0.5em ,\;\;\;\;\;k=1,h=2\kern1em \hfill \\ \frac{{\left( \begin{array}{*{20}c} \frac{{\alpha (k + 1)!}}{{w\;m!}}Q_{{k + 1,\;h}}^{*}({\nu_1},\;{\nu_2},\ldots,\;{\nu_{{j - 1}}},\;{\nu_{{j + 1}}},\ldots,\,{\nu_m};\;w) + \hfill \\ \frac{{\beta (k - 1)!}}{m! }P_{{k - 1,\;h}}^{*}({\nu_1},\;{\nu_2},\ldots,\;{\nu_m};\;w) \hfill \\\end{array} \right)}}{{1 - \frac{{{\lambda_2}w}}{m}S*\left( {{\nu_j}} \right) - \frac{{(m + 1)}}{w}}}\kern0.5em ,\;\ 2\,\leq\,k\,\leq\,C - 1,\;1\,\leq\,j\,\leq\,m,\;h = 2 \hfill \\ \frac{{\frac{{\beta (C - 1)!}}{C! }P_{{C - 1,\;h}}^{*}({\nu_1},\;{\nu_2},\ldots,\;{\nu_C};\;w)}}{{1 - \frac{{{\lambda_2}w}}{C}S*\left( {{\nu_C}} \right)}},\ \hfill \\ \kern24em k = C,\;h = 2 \hfill \\\end{array} \right.\kern0.75em } \hfill \\ \end{array} $$

From the above equations, we get

$$ \begin{array}{*{20}c} {Q_{{2,\;h}}^{*}(0;\;w) = \frac{\mathrm{w}}{{\alpha 2!}}\left( {Q_{{1,\;h}}^{*}(0;\;w)\left( {1 - {\lambda_2}wS*\left( {{\nu_1}} \right) - \frac{2}{w}} \right) - {\lambda_2}{P_{{1,\;h}}}(w)} \right),\;\;\mathrm{k} = 1,\;\;\mathrm{h} = 2} \hfill \\ \begin{array}{*{20}c} Q_{{k + 1,\;h}}^{*}\left( {{\nu_1},\;{\nu_2},\ldots,\;{\nu_{{j - 1}}},\;{\nu_{{j + 1}}},\ldots,\;{\nu_m};\;w} \right) = \frac{{w\,m!}}{{\alpha \left( {k + 1} \right)!}}\left[ \begin{array}{*{20}c} Q_{{k,\;h}}^{*}\left( {{\nu_1},\;{\nu_2},\ldots,\;{\nu_{{j - 1}}},\;{\nu_{{j + 1}}},\ldots,\;{\nu_m};\;w} \right)\left( {1 - \frac{{{\lambda_2}w}}{m}S\,*\,\left( {{\nu_j}} \right) - \frac{{(m + 1)}}{w}} \right) - \hfill \\ \kern7em \frac{{\beta (k - 1)!}}{m! }P_{{k - 1,\;h}}^{*}({\nu_1},\;{\nu_2}.........{\nu_m};\;w) \hfill \\\end{array} \right] \hfill \\ \kern23.25em 2\,\leq\,k\,\leq\,C - 1,\;1\,\leq\,j\,\leq\,m,\;h = 2 \hfill \\\end{array} \hfill \\ \begin{array}{*{20}c} Q_{{k,\,h}}^{*}({\nu_1},\;{\nu_2},\ldots,\;{\nu_{{j - 1}}},\;{\nu_{{j + 1}}},\ldots,\,{\nu_m};\;w) = \frac{{\frac{{\beta (C - 1)!}}{C! }P_{{C - 1,\;h}}^{*}({\nu_1},\;{\nu_2},\ldots,\;{\nu_C};\;w)}}{{1 - \frac{{{\lambda_2}w}}{C}S*\left( {{\theta_C}} \right)}}\kern0.75em \hfill \\ \kern23.5em k = C,\;h = 2 \hfill \\\end{array} \hfill \\ \end{array} $$
(A14)

where \( {\nu_j} = {\lambda_1} + \alpha + {\lambda_2}\left( {1 - \frac{{z(k - n + 1)!}}{\mathrm{n}!} - \frac{{(k - 1)!}}{m! }} \right) - \frac{1}{m!}\;\mathrm{and}\;P_{{k - 1,\;h}}^{*}({\nu_1},\;{\nu_2},\ldots,\;{\nu_n};\;w),\;h = 2 \) is obtained from (A13).

1.5 Proof of Theorem 3.2.5

The LHS of equation (21) vanishes at \( \left( {{\theta_i}+{\nu_j}} \right)={\lambda_1}\left( {1-\frac{{z(k-n-m+1)\;!}}{{m\;!n\;!}}} \right)+{\lambda_2}\left( {1-\frac{{w(k-n-m+1)\;!}}{{n\;!m\;!}}} \right)+\alpha \)

For \( i=1,2,\ldots,n\;\;\quad j=1,2,\ldots,m \), thus we have

$$ \begin{array}{*{20}c} {Q_{{k,\;h}}^{*}({\theta_1},\ldots,\;{\theta_{{i - 1}}},\;{\theta_{{i + 1}}},\ldots,\;{\theta_n},\;{\nu_1},\ldots,\;{\nu_m};\;z;\;w) + Q_{{k,\;h}}^{*}({\theta_1},\ldots,\;{\theta_n},\;{\nu_1},\ldots,\;{\nu_{{j - 1}}},\;{\nu_{{j + 1}}},\ldots,\;{\nu_m};\;z;\;w) = } \hfill \\ {\ \frac{{\left( \begin{array}{*{20}c} \frac{{\alpha (\mathrm{k} + 1)!}}{\mathrm{n}!\mathrm{z}}\left( {Q_{{k + 1,\;h}}^{*}({\theta_1},\ldots,\;{\theta_{{i - 1}}},\;{\theta_{{i + 1}}},\ldots,\;{\theta_n},\;{\nu_1},\ldots,\;{\nu_m};\;z;\;w) + Q_{{k + 1,\;h}}^{*}({\theta_1},\ldots,\;{\theta_n},\;{\nu_1},, ..,\;{\nu_{{j - 1}}},\;{\nu_{{j + 1}}},\ldots,\;{\nu_m};\;z;\;w)} \right) \hfill \\ - \frac{{\beta (\mathrm{k} - 1)!}}{\mathrm{m}!\mathrm{w}}P_{{k - 1,\;h}}^{*}({\theta_1},\ldots,\;{\theta_n},\;{\nu_1},\ldots,\;{\nu_m};\;z;\;w) + \hfill \\ \sum\limits_{{i = 1}}^n {\sum\limits_{{j = 1}}^{{m + i}} {\frac{{{\lambda_2}}}{m! }S*\left( {{\nu_j}} \right)Q_{{k,\;h}}^{*}({\theta_1},\;{\theta_2}....{\theta_{{j - 1}}},\;{\nu_j},\;{\theta_{{j + 1}}}.....{\theta_n};\;{\nu_1},\;{\nu_2}.....{\nu_{{j - 1}}},\;{\nu_{{j + 1}}}....{\nu_m};\;z;\;w)} } \hfill \\\end{array} \right)}}{{\left( {1 - \frac{{{\lambda_1}z}}{n}{S^{*}}\left( {{\theta_i}} \right) - \frac{{n + 1}}{z}} \right) + \left( {1 - \frac{{{\lambda_2}w}}{m}{S^{*}}\left( {{\nu_j}} \right) - \frac{{m + 1}}{w}} \right)}},} \hfill \\ {\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;h = 1,\;2} \hfill \\ \end{array} $$
(A15)

where

$$ \begin{array}{*{20}c} {{\theta_{\mathrm{i}}}={\lambda_1}\frac{{z(k-n-m+1)\;!}}{{m\;!n\;!}}-{\lambda_2}\frac{{w(k-n-m+1)\;!}}{{n\;!m\;!}}+\frac{{{\lambda_2}(k-1)!}}{m! }-\frac{1}{m! },\kern1.25em } \hfill \\ {{\nu_{\mathrm{j}}}=-{\lambda_1}\frac{{z(k-n-m+1)\;!}}{{m\;!n\;!}}+{\lambda_1}\frac{{z(k-n+1)\;!}}{{n\;!m\;!}}-\frac{1}{n! },\kern0.5em } \hfill \\ \end{array} $$

is the another expression for \( P_{k,h}^{*}({\theta_1},{\theta_2},\ldots,{\theta_n}; {\nu_1},{\nu_2},\ldots, {\nu_m}; z; w) \) in terms of \( Q_{k,h}^{*}({\theta_1},\ldots,{\theta_{i-1 }},{\theta_{i+1 }},\ldots,{\theta_n},{\nu_1},\ldots,{\nu_m};z;w)+Q_{k,h}^{*}({\theta_1},\ldots,{\theta_n},{\nu_1},\ldots,{\nu_{j-1 }},{\nu_{j+1 }},\ldots,{\nu_m};z;w) \) for the combinations both the customers.

By differentiating both sides of (20), \( (r+1) \) times w. r. t. \( {\theta_1} \) and \( {\nu_1} \) and evaluating at \( {\theta_1}={\lambda_1}z(k-1)\;! - {\lambda_2}w(k-1)\;!+{\lambda_2}(k-1)!-1,\kern1.25em {\nu_1}=-{\lambda_1}z(k-1)\;!+{\lambda_1}z(k-1)\;!-1,\kern1em \)yields for \( r=0,1,2...., \) we have

$$ \begin{array}{*{20}c} {(r + 1)\left( {\frac{{{d^r}}}{{d\theta_1^r}} + \frac{{{d^r}}}{{d\nu_1^r}}} \right)P_{{k,\;t}}^{*}({\theta_1};\;{\nu_1};\;z;\;w) = - > {\lambda_1}z{S^{{*(r + 1)}}}\left( {{\theta_1}} \right)Q_{{k,\;t}}^{*}(0;\;{\nu_1};\;z;\;w) + } \hfill \\ {\left( {1 - {\lambda_1}zS*\left( {{\theta_1}} \right) - \frac{2}{z}} \right)Q_{{k,\;t}}^{{*(r + 1)}}(0;\;{\nu_1};\;z;\;w) - \frac{{\alpha (k + 1)!}}{\mathrm{z}}Q_{{k + 1,\,t}}^{{*(r + 1)}}(0;\;{\nu_1};\;z;\;w) - } \hfill \\ {{\lambda_2}w{S^{{*(r + 1)}}}\left( {{\nu_1}} \right)Q_{{k,\,t}}^{*}({\theta_1};\;0;\;z;\;w) + \left( {1 - {\lambda_2}wS*\left( {{\nu_1}} \right) - \frac{2}{w}} \right)Q_{{k,\;t}}^{{*(r + 1)}}({\theta_1};\;0;\;z;\;w)} \hfill \\ \begin{array}{*{20}c} - \frac{{\alpha (k + 1)!}}{\mathrm{w}}\sum\limits_{{j = 1}}^m {Q_{{k + 1,\;t}}^{{*(r + 1)}}} ({\theta_1};\;0;\;z;\;w) - \beta (k - 1)!\left( {\frac{{{d^r}}}{{d\theta_1^r}} + \frac{{{d^r}}}{{d\nu_1^r}}} \right)P_{{k - 1,\;t}}^{*}({\theta_1};\;{\nu_1};\;z;\;w) \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;h = 1,\;2\ \hfill \\\end{array} \hfill \\ \end{array} $$
(A16)

Now, adding equations (20) and (21), and differentiating both sides , \( (r+1) \) times w.r.t \( {\theta_i} \) and \( {\nu_j} \) for \( i=1,2,\ldots n\leq k,\;\;j=1,2,\ldots,m\leq k, \) m + n \( \leq \) C and evaluating at

$$ \begin{array}{*{20}c} \begin{array}{*{20}c} {{\theta_{\mathrm{i}}} = {\lambda_1}\frac{{z(k - n - m + 1)!}}{{m\;!n\;!}} - {\lambda_2}\frac{{w(k - n - m + 1)\;!}}{{n\;!m\;!}} + \frac{{{\lambda_2}(k - 1)!}}{m!} - \frac{1}{m! },} \hfill \\ {{\nu_{\mathrm{j}}}=-{\lambda_1}\frac{{z(k - n - m + 1)\;!}}{{m\;!n\;!}} + {\lambda_1}\frac{{z(k - n + 1)\;!}}{{n\;!m\;!}} - \frac{1}{n! },} \hfill \\ \end{array}\kern1.5em \hfill \\ \kern1.25em \hfill \\\end{array} $$

yields for \( r=0,1,2...., \) we have

$$ \begin{array}{*{20}c} \begin{array}{*{20}c} {(r + 1)\left( {\frac{{{\partial^r}}}{{\partial \theta_i^r}} + \frac{{{\partial^r}}}{{\partial \nu_j^r}}} \right)P_{{k,\,h}}^{*}({\theta_1},\;{\theta_2},\ldots,\;{\theta_n};\;{\nu_1},\;{\nu_2},\ldots,\;{\nu_m};\;z;\;w) = } \hfill \\ {-\sum\limits_{{i = 1}}^n {\frac{{{\lambda_1}z}}{n}\frac{{{\partial^{{r + 1}}}}}{{\partial \theta_i^{{r + 1}}}}{S^{*}}\left( {{\theta_i}} \right)Q_{{k,\,h}}^{*}({\theta_1},\;{\theta_2},\ldots,\;{\theta_{{i - 1}}},\;{\theta_{{i + 1}}},\ldots,{\theta_n}; {\nu_1},{\nu_2},\ldots,{\nu_m}; z; w\;)} -} \hfill \\ {\sum\limits_{{j = 1}}^m {\frac{{{\lambda_2}w}}{m}\frac{{{\partial^{{r + 1}}}}}{{\partial \nu_j^{{r + 1}}}}{S^{*}}\left( {{\nu_j}} \right)} Q_{{k,\,h}}^{*}({\theta_1},\;{\theta_2},\ldots,\;{\theta_n};\;{\nu_1},\;{\nu_2},\ldots,\;{\nu_{{j - 1}}},\;{\nu_{{j + 1}}},\ldots,\;{\nu_m};\;z;\;w) + } \hfill \\ {\ \sum\limits_{{i = 1}}^n {\left( {1 - \frac{{{\lambda_1}z}}{n}S*\left( {{\theta_i}} \right) - \frac{{(n + 1)}}{z}} \right)\frac{{{\partial^{{r + 1}}}}}{{\partial \theta_i^{{r + 1}}}}Q_{{k,\,h}}^{*}({\theta_1},\;{\theta_2},\ldots,\;{\theta_{{i - 1}}},\;{\theta_{{i + 1}}},\ldots,\;{\theta_n};\;{\nu_1},\;{\nu_2},\ldots,\;{\nu_m};\;z;\;w)} + } \hfill \\ {\sum\limits_{{j = 1}}^m {\left( {1 - \frac{{{\lambda_2}w}}{m}S*\left( {{\nu_j}} \right) - \frac{{(m + 1)}}{w}} \right)\frac{{{\partial^{{r + 1}}}}}{{\partial \nu_j^{{r + 1}}}}Q_{{k,\;h}}^{*}({\theta_1},\;{\theta_2},\ldots,\;{\theta_n};\;{\nu_1},\;{\nu_2},\ldots,\;{\nu_{{j - 1}}},\;{\nu_{{j + 1}}},\ldots,\;{\nu_m};\,z;\;w)} - } \hfill \\ {\frac{{\alpha (k + 1)!}}{{n\;!\mathrm{z}}}\frac{{{\partial^{{r + 1}}}}}{{\partial \theta_i^{{r + 1}}}}Q_{{k + 1,\;h}}^{*}({\theta_1},\;{\theta_2},\ldots,\;{\theta_{{i - 1}}},\;{\theta_{{i + 1}}},\ldots,\;{\theta_n};\;{\nu_1},\;{\nu_2},\ldots,\;{\nu_m};\;z;\;w) - } \hfill \\ {\frac{{\alpha (k + 1)!}}{m!w}\frac{{{\partial^{{r + 1}}}}}{{\partial \nu_j^{{r + 1}}}}Q_{{k + 1,\;h}}^{*}({\theta_1},\;{\theta_2},\ldots,\;{\theta_n};\;{\nu_1},\;{\nu_2},\ldots,\;{\nu_{{j - 1}}},\;{\nu_{{j + 1}}},\ldots,\;{\nu_m};\,z;\;w) - } \hfill \\ {\frac{{\beta (k - 1)!}}{m!n!}\left( {\frac{{{\partial^r}}}{{\partial \theta_i^r}} + \frac{{{\partial^r}}}{{\partial \nu_j^r}}} \right)P_{{k - 1,\;h}}^{*}({\theta_1},\;{\theta_2},\ldots,\;{\theta_n};\;{\nu_1},\;{\nu_2},\ldots,\;{\nu_m};\;z;\;w) - } \hfill \\ {\ \sum\limits_{{\mathrm{i} = 1}}^{\mathrm{n}} {\sum\limits_{{\mathrm{j} = 1}}^{{\mathrm{m} + \mathrm{i}}} {\frac{{{\lambda_2}}}{\mathrm{m}!}} } \frac{{{\partial^{{r + 1}}}}}{{\partial \nu_j^{{r + 1}}}}P_{{k,\;h}}^{*}({\theta_1},\;{\theta_2},\ldots,\;{\theta_{{i - 1}}},\;{\nu_j},\;{\theta_{{i + 1}}},\ldots,\,{\theta_n};\;{\nu_1},\;{\nu_2},\ldots,\;{\nu_{{j - 1}}},\;{\nu_{{j + 1}}},\ldots,\;{\nu_m};\;z;\;w),\;h = 1,\;2} \hfill \\ \end{array}\kern0.5em \hfill \\ \kern2.5em \hfill \\\end{array} $$
(A17)

By starting with \( r=0 \) in (A17) and successive substitution of the equation (A17), with \( r=1,2,\ldots,k \) we get

$$ \begin{array}{*{20}c} {P_{{k,\;h}}^{*}({\theta_1},\;{\theta_2},\ldots,\;{\theta_n};\;{\nu_1},\;{\nu_2},\ldots,\;{\nu_m};\;z;\;w) = P_{{k,\,h}}^{*(0) }({\theta_1},\;{\theta_2},\ldots,\;{\theta_n};\;{\nu_1},\;{\nu_2},\ldots,\;{\nu_m};\;z;\;w) = } \hfill \\ {\sum\limits_{{l = 1}}^k {\tfrac{{{(-1)^{k+1-l }}{\beta^{k-1 }}}}{{m\;!(1.2\ldots (k+1-l))}}} \left[ \begin{array}{*{20}c} \sum\limits_{i=1}^n {\frac{{{\lambda_1}z}}{n}{S^{*(k+1-l) }}\left( {{\theta_i}} \right)Q_{l,h}^{*}({\theta_1},{\theta_2},\ldots,{\theta_{i-1 }},{\theta_{i+1 }},\ldots,{\theta_n};{\nu_1},{\nu_2},\ldots,{\nu_m};z; w\;)} \hfill \\ -\sum\limits_{j=1}^m {\frac{{{\lambda_2}w}}{m}{S^{*(k+1-l) }}\left( {{\nu_j}} \right)Q_{l,h}^{*}({\theta_1},{\theta_2},\ldots,{\theta_n};{\nu_1},{\nu_2},\ldots,{\nu_{j-1 }},{\nu_{j+1 }},\ldots,{\nu_m};z; w\;)} \hfill \\\end{array} \right]} \hfill \\ {+\sum\limits_{l=1}^k {\tfrac{{{(-1)^{k+1-l }}{\beta^{k-1 }}}}{{n\;!(1.2\ldots (k+1-l))}}} \sum\limits_{i=1}^n {\left( {1-\frac{{{\lambda_1}z}}{n}{S^{*}}\left( {{\theta_i}} \right)-\frac{(n+1) }{z}} \right)\frac{{{\partial^{k+1-l }}}}{{\partial \theta_i^{k+1-l }}}Q_{l,h}^{*}({\theta_1},{\theta_2},\ldots,{\theta_{i-1 }},{\theta_{i+1 }},\ldots,{\theta_n};{\nu_1},{\nu_2},\ldots,{\nu_m};z; w\;)} } \hfill \\ {+\sum\limits_{l=1}^k {\tfrac{{{(-1)^{k+1-l }}{\beta^{k-1 }}}}{{m\;!(1.2\ldots (k+1-l))}}} \sum\limits_{i=1}^n {\left( {1-\frac{{{\lambda_2}w}}{m}{S^{*}}\left( {{\nu_j}} \right)-\frac{(m+1) }{w}} \right)\frac{{{\partial^{k+1-l }}}}{{\partial \nu_j^{k+1-l }}}Q_{l,h}^{*}({\theta_1},{\theta_2},\ldots,{\theta_n};{\nu_1},{\nu_2},\ldots,{\nu_{j-1 }},{\nu_{j+1 }},\ldots,{\nu_m};z; w\;)} } \hfill \\ { - \sum\limits_{l=1}^{k+1 } {\tfrac{{{(-1)^{k+1-l }}{\beta^{k-1 }}}}{{m\;!(1.2\ldots (k+1-l))}}} \left[ \begin{array}{*{20}c} \sum\limits_{i=1}^n {\left( {\frac{{l\ !\alpha }}{{\mathrm{n}\;!\mathrm{z}}}} \right)Q_{l,h}^{*(k+1-l) }({\theta_1},{\theta_2},\ldots,{\theta_{i-1 }},{\theta_{i+1 }},\ldots,{\theta_n};{\nu_1},{\nu_2},\ldots,{\nu_m};z; w)} \hfill \\ +\sum\limits_{j=1}^m {\left( {\frac{{l\ !\alpha }}{{m!\ \mathrm{w}}}} \right)Q_{l,h}^{*(k+1-l) }({\theta_1},{\theta_2},\ldots,{\theta_n};{\nu_1},{\nu_2},\ldots,{\nu_{j-1 }},{\nu_{j+1 }},\ldots,{\nu_m};z; w\;)} \hfill \\\end{array} \right]} \hfill \\ {-\sum\limits_{l=1}^k {\tfrac{{{(-1)^{k+1-l }}{\beta^{k-1 }}}}{{m\;!(1.2\ldots (k+1-l))}}} \sum\limits_{{\mathrm{i}=1}}^{\mathrm{n}} {\sum\limits_{{\mathrm{j}=1}}^{{\mathrm{m}+\mathrm{i}}} {\frac{{{\lambda_2}}}{\mathrm{m}!}} } P_{l,h}^{*}({\theta_1},{\theta_2},\ldots,{\theta_{i-1 }},{\nu_j},{\theta_{i+1 }},\ldots,{\theta_n}; {\nu_1},{\nu_2},\ldots,{\nu_{j-1 }},{\nu_{j+1 }},\ldots,{\nu_m}; z; w\;)\kern0.75em ,\ h=1,2} \hfill \\ \end{array} $$
(A18)

By substituting (A18) in (A15), we have the following recursive form about the boundary function

$$ \begin{array}{*{20}c} \begin{array}{*{20}c} {Q_k^{*}({\theta_1},\ldots,{\theta_{i-1 }},{\theta_{i+1 }},\ldots,{\theta_n},{\nu_1},\ldots,{\nu_m};z;w)+Q_k^{*}({\theta_1},\ldots,{\theta_n},{\nu_1},\ldots,{\nu_{j-1 }},{\nu_{j+1 }},\ldots,{\nu_m};z;w)} \hfill \\ {\left\{ \begin{array}{*{20}c} =\frac{{\frac{{\alpha 2\;!}}{{z\;}}Q_{2,h}^{*}(0;z\;)-{\lambda_1}{P_{1,h }}(z)}}{{1-{\lambda_1}zS*\left( {{\theta_i}} \right)-\frac{2}{z}}}\kern0.75em ,\ k=1, h=1\ (\mathrm{low}\ \mathrm{priority}\ \mathrm{calls}) \hfill \\ =\frac{{\frac{{\alpha 2\;!}}{{w\;}}Q_{2,h}^{*}(0;w\;)-{\lambda_2}{P_{1,h }}(w)}}{{1-{\lambda_2}zS*\left( {{\nu_j}} \right)-\frac{2}{w}}}\kern0.75em ,\ k=1,h=2\kern1em (\mathrm{high}\ \mathrm{priority}\ \mathrm{calls}) \hfill \\ =\frac{{\left( \begin{array}{*{20}c} \left( \begin{array}{*{20}c} \frac{{\alpha (\mathrm{k}+1)!}}{\mathrm{n}!\mathrm{z}}Q_{k+1,h}^{*}({\theta_1},\ldots,{\theta_{i-1 }},{\theta_{i+1 }},\ldots,{\theta_n},{\nu_1},\ldots,{\nu_m};z;w) \hfill \\ +\frac{{\alpha (\mathrm{k}+1)!}}{\mathrm{m}!\mathrm{w}}Q_{k+1,h}^{*}({\theta_1},\ldots,{\theta_n},{\nu_1},\ldots,{\nu_{j-1 }},{\nu_{j+1 }},\ldots,{\nu_m};z;w) \hfill \\\end{array} \right) \hfill \\ -\frac{{\beta (\mathrm{k}-1)!}}{\mathrm{m}!\mathrm{n}!}P_{k-1,h}^{*}({\theta_1},\ldots,{\theta_n},{\nu_1},\ldots,{\nu_m};z;w)+ \hfill \\ \sum\limits_{i=1}^n {\sum\limits_{j=1}^{m+i } {\frac{{{\lambda_2}}}{{m\;!}}S*\left( {{\nu_j}} \right)Q_{k,h}^{*}({\theta_1},{\theta_2},\ldots,{\theta_{j-1 }},{\nu_j},{\theta_{j+1 }},\ldots,{\theta_n};{\nu_1},{\nu_2},\ldots,{\nu_{j-1 }},{\nu_{j+1 }},\ldots,{\nu_m};z; w)} } \hfill \\\end{array} \right)}}{{\left( {1-\frac{{{\lambda_1}z}}{n}{S^{*}}\left( {{\theta_i}} \right)-\frac{n+1 }{z}} \right)+\left( {1-\frac{{{\lambda_2}w}}{m}{S^{*}}\left( {{\nu_j}} \right)-\frac{m+1 }{w}} \right)}},\kern3.75em \hfill \\ \kern14.25em i = 1,2,\ldots,n,\ j = 1,2,\ldots,m,\ m+n\leq\ C,h=1,2 \hfill \\ =\frac{{\left( \begin{array}{*{20}c} \frac{{\beta (\mathrm{C}-1)!}}{\mathrm{m}!\mathrm{n}!}P_{C-1,h}^{*}({\theta_1},\ldots,{\theta_n},{\nu_1},\ldots,{\nu_m};z;w)+ \hfill \\ \sum\limits_{i=1}^n {\sum\limits_{j=1}^{m+i } {\frac{{{\lambda_2}}}{{m\;!}}S*\left( {{\nu_j}} \right)Q_{k,h}^{*}({\theta_1},{\theta_2},\ldots,{\theta_{j-1 }},{\nu_j},{\theta_{j+1 }},\ldots,{\theta_n};{\nu_1},{\nu_2},\ldots,{\nu_{j-1 }},{\nu_{j+1 }},\ldots,{\nu_m};z; w)} } \hfill \\\end{array} \right)}}{{\left( {1-\frac{{{\lambda_1}z}}{n}{S^{*}}\left( {{\theta_i}} \right)-\frac{n+1 }{z}} \right)+\left( {1-\frac{{{\lambda_2}w}}{m}{S^{*}}\left( {{\nu_j}} \right)-\frac{m+1 }{w}} \right)}},\kern0.75em \hfill \\ \kern21em m+n = C,h=1,2 \hfill \\\end{array} \right.} \hfill \\ {Q_{2,h}^{*}(0;z)=\frac{\mathrm{z}}{{\alpha 2\;!\;}}\left( {Q_{1,h}^{*}(0; z\;)\left( {1-{\lambda_1}zS*\left( {{\theta_1}} \right)-\frac{2}{z}} \right) - {\lambda_1}{P_{1,h }}(z)} \right),\ k=1,h=1\ (\mathrm{low}\ \mathrm{priority}\ \mathrm{calls})} \hfill \\ {Q_{2,h}^{*}(0;w)=\frac{\mathrm{w}}{{\alpha 2\;!\;}}\left( {Q_{1,h}^{*}(0; w\;)\left( {1-{\lambda_2}wS*\left( {{\nu_1}} \right)-\frac{2}{w}} \right) - {\lambda_2}{P_{1,h }}(w)} \right),\ k=1,h=2\ (\mathrm{high}\ \mathrm{priority}\ \mathrm{calls})} \hfill \\ \begin{array}{*{20}c} \left( {\frac{m! }{z}Q_{k+1,h}^{*}({\theta_1},\ldots,{\theta_{i-1 }},{\theta_{i+1 }},\ldots,.{\theta_n},{\nu_1},\ldots,{\nu_m};z;w)+\frac{n! }{w}Q_{k+1,h}^{*}({\theta_1},\ldots,{\theta_n},{\nu_1},\ldots,{\nu_{j-1 }},{\nu_{j+1 }},\ldots,{\nu_m};z;w)} \right) \hfill \\ =\frac{m!n! }{{\alpha (k+1)}}\left( {Q_{k,h}^{*}({\theta_1},\ldots,{\theta_{i-1 }},{\theta_{i+1 }},\ldots,{\theta_n},{\nu_1},\ldots,{\nu_m};z;w)+Q_{k,h}^{*}({\theta_1},\ldots,{\theta_n},{\nu_1},\ldots,{\nu_{j-1 }},{\nu_{j+1 }},\ldots,{\nu_m};z;w)} \right) \hfill \\ \kern2em \left[ {\left( {1-\frac{{{\lambda_1}z}}{n}{S^{*}}\left( {{\theta_i}} \right)-\frac{n+1 }{z}} \right)+\left( {1-\frac{{{\lambda_2}w}}{m}{S^{*}}\left( {{\nu_j}} \right)-\frac{m+1 }{w}} \right)} \right]+\tfrac{{\beta (\mathrm{k}-1)!}}{{\alpha (k+1)!}}P_{k-1,h}^{*}({\theta_1},\ldots,{\theta_n},{\nu_1},\ldots,{\nu_m};z;w)+ \hfill \\ \kern2em \sum\limits_{i=1}^n {\sum\limits_{j=1}^{m+i } {\frac{{n\,!{\lambda_2}}}{{\alpha (k+1)\;!}}S*\left( {{\nu_j}} \right)Q_{k,t}^{*}({\theta_1},{\theta_2},\ldots,{\theta_{j-1 }},{\nu_j},{\theta_{j+1 }},\ldots,{\theta_n};{\nu_1},{\nu_2},\ldots,{\nu_{j-1 }},{\nu_{j+1 }},\ldots,{\nu_m};z; w)} } \hfill \\ \kern25.5em i = 1,2,\ldots, n,\ j = 1,2,\ldots, m,\ m+n\leq\ C,h=1,2 \hfill \\\end{array} \hfill \\ \begin{array}{*{20}c} Q_{k,h}^{*}({\theta_1},\ldots,{\theta_{i-1 }},{\theta_{i+1 }},\ldots,{\theta_n},{\nu_1},\ldots,{\nu_m};z;w)+Q_{k,h}^{*}({\theta_1},\ldots,{\theta_n},{\nu_1},\ldots,{\nu_{j-1 }},{\nu_{j+1 }},\ldots,{\nu_m};z;w) \hfill \\ \kern1.5em =\frac{{\left( \begin{array}{*{20}c} \frac{{\beta (\mathrm{C}-1)!}}{\mathrm{m}!\mathrm{n}!}P_{C-1,h}^{*}({\theta_1},\ldots,{\theta_n},{\nu_1},\ldots,{\nu_m};z;w)+ \hfill \\ \sum\limits_{i=1}^n {\sum\limits_{j=1}^{m+i } {\frac{{{\lambda_2}}}{{m\;!}}S*\left( {{\nu_j}} \right)P_{C,h}^{*}({\theta_1},{\theta_2},\ldots,{\theta_{j-1 }},{\nu_j},{\theta_{j+1 }},\ldots,{\theta_n};{\nu_1},{\nu_2},\ldots,{\nu_{j-1 }},{\nu_{j+1 }},\ldots,{\nu_m}; z; w)} } \hfill \\\end{array} \right)}}{{\left( {1-\frac{{{\lambda_1}z}}{n}{S^{*}}\left( {{\theta_i}} \right)-\frac{n+1 }{z}} \right)+\left( {1-\frac{{{\lambda_2}w}}{m}{S^{*}}\left( {{\nu_j}} \right)-\frac{m+1 }{w}} \right)}},\kern2.75em \hfill \\ \kern32.5em m+n = C,h=1,2 \hfill \\\end{array} \hfill \\ \end{array} \hfill \\ \kern2.25em \hfill \\ \kern0.5em \hfill \\\end{array} $$
(A19)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vadivu, A.S., Vinayak, R., Dharmaraja, S. et al. Performance analysis of voice over internet protocol via non Markovian loss system with preemptive priority and server break down. OPSEARCH 51, 50–75 (2014). https://doi.org/10.1007/s12597-013-0132-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12597-013-0132-7

Keywords

Mathematics Subject Classification (2000)

Navigation