Skip to main content
Log in

Optimal ordering policy for deteriorating items with power-form stock dependent demand under two-warehouse storage facility

  • Application Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

In realistic world, there usually exist various factors that induce the retailer to order more items than the capacity of his Own-warehouse (OW). Therefore, for the retailer, it is very practical to determine whether or not to rent other warehouse and what order policy to adopt if other warehouse is indeed needed. For the stock dependent demand pattern, retailer has his own warehouse to display the items and may hire another warehouse of the larger capacity, treated as rented warehouse (RW) to storage the excess inventory. In this paper, an inventory model with power form stock-dependent demand rate is developed. The demand rate is assumed to be a polynomial form of current inventory level in Own-warehouse. It is also assumed that retailer first fulfills the demand (depending upon the stock displayed in the OW) directly from the RW until the inventory level in the RW reaches to the zero level, after that, demand is fulfilled from OW. As a consequence, no item is transferred from RW to OW, therefore no transfer cost (neither fixed nor variable) is considered between RW and OW. It is considered that the deterioration rate per unit items in the RW and OW are different due to different preservation environments, as a consequence the holding costs per unit item in RW and OW are also different. Proposed model is illustrated with some numerical example along with some sensitivity analysis of parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Balkhi, T.Z., Benkherouf, L.: On an inventory model for deteriorating items with stock dependent and time varying demand rates. Comput. Oper. Res. 31, 223–240 (2004)

    Article  Google Scholar 

  2. Balakrishnan, A., Pangburn, M.S., Stavrulaki, E.: Stack them high, let 'em fly": Lot-sizing policies when inventories stimulate demand. Manag. Sci. 50(5), 630–644 (2004)

    Article  Google Scholar 

  3. Bhunia, A.K., Maiti, M.: A two-warehouse inventory model for deteriorating items with a linear trend in demand and shortages. J. Oper. Res. Soc. 49, 287–292 (1998)

    Google Scholar 

  4. Chang, J., Dye, C.Y.: An EOQ model for deteriorating items with time varying demand and partial backlogging. J. Oper. Res. Soc. 50, 1176–1182 (1999)

    Google Scholar 

  5. Datta, T.K., Pal, A.K.: A note on an inventory model with inventory-level-dependent demand rate. J. Oper. Res. Soc. 41(10), 971–975 (1990)

    Google Scholar 

  6. Datta, T.K., Paul, K., Pal, A.K.: Demand promotion by up-gradation under stock-dependent demand situation—a model. (Int. J. Prod. Econ. 55, 31–38 (1998)

    Article  Google Scholar 

  7. Dave, U.: On the EOQ models with two levels of storage. Opsearch 25, 190–196 (1988)

    Google Scholar 

  8. Dave, U., Patel, L.K.: (T, Si) policy inventory model for deteriorating items with time proportional demand. J. Oper. Res. Soc. 32, 137–142 (1981)

    Google Scholar 

  9. Deb, M., Chaudhuri, K.S.: An EOQ model for items with finite rate of production and variable rate of deterioration. Opsearch 23, 175–181 (1986)

    Google Scholar 

  10. Dye, C.Y., Ouyang, L.Y., Hsieh, T.P.: Deterministic inventory model for deteriorating items with capacity constraint and time-proportional backlogging rate. Eur. J. Oper. Res. 178(3), 789–807 (2007)

    Article  Google Scholar 

  11. Ghare, P.M., Schrader, G.H.: A model for exponentially decaying inventory system. (Int. J. Prod. Econ. 21, 449–460 (1963)

    Google Scholar 

  12. Ghosh, S.K., Khanra, S., Chaudhuri, K.S.: An inventory model for a deteriorating item with two levels of storage and stock-dependent demand. Int. J. Math. Oper. Res. 3(2), 186–197 (2011)

    Article  Google Scholar 

  13. Hartely, V.R.: Operations research—a managerial emphasis, pp. 315–317. Good Year, Santa Monica (1976). Chapter 12

    Google Scholar 

  14. Hsieh, T.P., Dye, C.Y., Ouyang, L.Y.: Determining optimal lot size for a two-warehouse system with deterioration and shortages using net present value. Eur. J. Oper. Res. 191, 182–192 (2008)

    Article  Google Scholar 

  15. Kar, S., Bhunia, A.K., Maiti, M.: Deterministic inventory model with two levels of storage, a linear trend in demand and a fixed time horizon. Comput. Oper. Res. 28, 1315–1331 (2001)

    Article  Google Scholar 

  16. Pakkala, T.P.M., Achary, K.K.: A deterministic inventory model for deteriorating items with two warehouses and finite replenishment rate. Eur. J. Oper. Res. 57, 71–76 (1992)

    Article  Google Scholar 

  17. Roy, A., Maiti, M.K., Kar, S., Maiti, M.: An inventory model for a deteriorating item with displayed stock dependent demand under fuzzy inflation and time discounting over a random planning horizon. Appl. Math. Model. 33(2), 744–759 (2009)

    Article  Google Scholar 

  18. Sajadieh, M.S., Thorstenson, A., Jokar, M.R.A.: An integrated vendor-buyer model with stock-dependent demand. Transport. Res. E Logist. Transport. Rev. 46(6), 963–974 (2010)

    Article  Google Scholar 

  19. Sarma, K.V.S.: A deterministic order-level inventory model for deteriorating items with two storage facilities. Eur. J. Oper. Res. 29, 70–72 (1987)

    Article  Google Scholar 

  20. Singh, S.R., Singh, C., Singh, T.J.: Optimal policy for decaying items with stock-dependent demand under inflation in a supply chain. Int Rev Pure Appl Math 3(2), 189–197 (2007)

    Google Scholar 

  21. Singh, S.R., Singh, C.: Two echelon supply chain model with imperfect production, for Weibull distribution deteriorating items under imprecise and inflationary environment. Int. J. Oper. Res. Optim. 1(1), 9–25 (2010)

    Google Scholar 

  22. Teng, J.T., Chang, C.T.: EPQ model for deteriorating items with price and stock-dependent demand. Comput. Oper. Res. 31, 297–308 (1995)

    Google Scholar 

  23. Teng, J.T., Chang, C.T.: Economic production quantity models for deteriorating items with price and stock dependent demand. Comput. Oper. Res. 32, 297–308 (2005)

    Article  Google Scholar 

  24. Teng, J.T., Ouyang, L.Y., Cheng, M.C.: An EOQ model for deteriorating items with power-form stock-dependent demand. Inform. Manag. Sci. 16(1), 1–16 (2005)

    Google Scholar 

  25. Vishnoi, M., Shon, S.K.: Two levels of storage model for non-instantaneous deteriorating items with stock dependent demand, time varying partial backlogging under permissible delay in payment. Int. J. Oper. Res. Optim. 1(1), 133–147 (2010)

    Google Scholar 

  26. Wu, K.S., Ouyang, L.Y., Yang, C.T.: An optimal replenishment policy for non-instantaneous deteriorating items with stock-dependent demand and partial backlogging. Int. J. Prod. Econ. 101, 369 (2006)

    Article  Google Scholar 

  27. Yang, H.L.: Two-warehouse partial backlogging inventory models for deteriorating items under inflation. Int. J. Prod. Econ. 103, 362–370 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaman Singh.

Appendix

Appendix

Proof of Theorem 1: For the sake of convenience, let us suppose that

$$ \matrix{ {f(q) = \left( {p - c} \right)q\left( {\alpha \beta + \theta {q^{{\left( {1 - \beta } \right)}}}} \right) + S\alpha \left( {1 - \beta } \right)\quad {\mathrm{and}}} \\ {g(q) = \frac{{\left( {{h_o} + d\theta + p\theta } \right)}}{{\left( {2 - \beta } \right)}}{q^{{\left( {2 - \beta } \right)}}}} \\ }<!end array> $$

The graphs of the f(q) and g(q) are given in Fig. 5.

Fig. 5
figure 5

 

For single warehouse inventory system, it is seen that the optimal quantity q* for TP(q) to be maximum satisfies

$$ \left( {p - c} \right)q * \left( {\alpha \beta + \theta {{\left( {q * } \right)}^{{\left( {1 - \beta } \right)}}}} \right) + S\alpha \left( {1 - \beta } \right) = \frac{{\left( {{h_o} + d\theta + p\theta } \right)}}{{\left( {2 - \beta } \right)}}{\left( {q * } \right)^{{\left( {2 - \beta } \right)}}} $$
(30)
$$ {\mathrm{i}}.{\mathrm{e}}.{\mathrm{f}}\left( {{\mathrm{q}}*} \right) = {\mathrm{g}}\left( {{\mathrm{q}}*} \right) $$
(31)

Since M ≥ 0, we have

$$ \left( {p - c} \right)W\left( {\alpha \beta + \theta {W^{{\left( {1 - \beta } \right)}}}} \right) + S\alpha \left( {1 - \beta } \right) \geqslant \frac{{\left( {{h_o} + d\theta + p\theta } \right)}}{{\left( {2 - \beta } \right)}}{W^{{\left( {2 - \beta } \right)}}} $$
$$ i.e.f\left( W \right)\geqslant g\left( W \right) $$
(32)

from Eqs. 31 and 32 and the Fig. 5, we can easily observe that q* ≥ W. in contrast, if W ≤ q*, it can also be easily seen from Fig. 5 that f(W) ≥ g(W), i.e. M ≥ 0. This completes the proof of theorem 1.

Proof of Theorem 2: We have from Eq. 27

$$ \matrix{ {T{P_2}\left( {{T_r}} \right) = \frac{1}{T}\left[ {\left( {p + d} \right)W{e^{{ - \theta {T_r}}}} - \frac{{\left( {p\theta + {h_o} + d\theta } \right)}}{{\left( {2 - \beta } \right)\left( {\alpha + \theta {W^{{\left( {1 - \beta } \right)}}}} \right)}}{W^{{\left( {2 - \beta } \right)}}}{{\left\{ {1 - \theta \left( {1 - \beta } \right){T_r}} \right\}}^{{\frac{{\left( {2 - \beta } \right)}}{{\left( {1 - \beta } \right)}}}}}} \right.} \hfill \\ {+ \left( {p - c} \right)\alpha {W^{\beta }}\left( {{T_r} - \frac{{\theta \beta }}{2}T_r^2} \right) - \left( {c + d} \right)W - \left( {c + d} \right)\frac{{\gamma \alpha }}{{\delta + 1}}{W^{\beta }}T_r^{{\delta + 1}} - } \hfill \\ {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{h_o}W\left( {{T_r} - \frac{\theta }{2}T_r^2} \right) - {h_r}\alpha {W^{\beta }}\left( {\frac{1}{2}T_r^2 - \frac{{\theta \beta }}{3}T_r^3 + \frac{{\gamma \delta }}{{\left( {\delta + 1} \right)\left( {\delta + 2} \right)}}T_r^{{\delta + 2}} + } \right.} \hfill \\ {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left. {\left. {\frac{{\theta \beta \gamma }}{{\left( {\delta + 1} \right)\left( {\delta + 3} \right)}}T_r^{{\delta + 3}} + \frac{1}{2}{{\left( {\frac{\gamma }{{\delta + 1}}} \right)}^2}T_r^{{2\delta + 2}}} \right) - {S_1}} \right]} \hfill \\ }<!end array> $$

By the necessary condition of optimality, the optimal value of \( T_r^{ * } \) of Tr for the maximization of TP2(Tr), must satisfy \( \frac{{d\left[ {T{P_2}\left( {{T_r}} \right)} \right]}}{{d{T_r}}} = 0 \). For assuring the existence of \( T_r^{ * } \), we first differentiate \( \frac{{d\left[ {T{P_2}\left( {{T_r}} \right)} \right]}}{{d{T_r}}} \) with respect to T r i.e. \( \frac{{{d^2}\left[ {T{P_2}\left( {{T_r}} \right)} \right]}}{{dT_r^2}} \).

For the maximization of TP 2(T r ), \( \frac{{{d^2}\left[ {T{P_2}\left( {{T_r}} \right)} \right]}}{{dT_r^2}} < 0 \), for the optimal value \( T_r^{ *}\;of\;{T_r} \). Hence \( T_r^{ * } \) is the global maximum point of TP2(Tr) in the interval (0, T) when M ≥ 0.

Proof of Theorem 3: Based on results of theorem (2), the average total profit function reaches its maximum at the point \( {{\mathrm{T}}_{\mathrm{r}}} = T_r^{ * } \) in the interval [0, T] if M ≥ 0. This indicates that when M ≥ 0, the maximum average total profit \( T{P_2}({T_r}) \), for the inventory system with two warehouse should be greater than \( T{P_2}(0) \). From Eqs. 9 and 27, we see that \( T{P_2}(0) = T{P_1}(W) \).

Thus, \( T{P_2}(T_r^{*}) > T{P_1}(W),\,if\,M \geqslant 0. \)

From theorem (1), the optimal ordering quantity q*, of the single-warehouse system is greater than or equal to W when M ≥ 0. Therefore, for single-warehouse inventory system with capacity restriction, the optimal ordering quantity q* = W, and the corresponding maximal average profit is TP1(W). Hence it concludes the theorem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, C., Singh, S.R. Optimal ordering policy for deteriorating items with power-form stock dependent demand under two-warehouse storage facility. OPSEARCH 50, 182–196 (2013). https://doi.org/10.1007/s12597-012-0105-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12597-012-0105-2

Keywords

Navigation