Skip to main content
Log in

Fuzzy production inventory model for deteriorating items with shortages under the effect of time dependent learning and forgetting: a possibility / necessity approach

  • Application Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

This study investigates the effects of learning and forgetting on the production lot size problems allowing shortages for the infinite planning horizon. Items deteriorate while they are in storage, and both demand and deterioration rates are arbitrary function of time. This paper extends the work of Alamri and Balkhi (Int. J. Prod. Econ. 107:125–138, 2007) by assuming the shortages in production lot size model subject to the effects of learning and forgetting in fuzzy environment. The system is subject to learning in the production stage and to forgetting while production ceased so that the optimal manufactured quantity for any given cycle is dependent on the instantaneous production rate. All cost are taken constants or fuzzy in nature. Hence two models are introduced separately with constant and fuzzy cost. A closed form for the total relevant costs is derived, that minimizes total cost of the underlying inventory system. Model with fuzzy costs is formulated as to optimize the possibility/ necessity measure of the fuzzy goal of the objective function. When costs are imprecise, optimistic and pessimistic equivalent of fuzzy objective function is obtained by using credibility measure of fuzzy event by taking fuzzy expectation. The models are illustrated with three examples as well as their numerical verifications are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Celen, B., Hyndman, K.: Social learning through endogenous information acquisition: an experiment. Manag. Sci. (2012). doi:10.1287/mnsc.1110.1506

  2. Pathak, S., Sarkar (Mondal), S.: A fuzzy EOQ inventory model for random Weibull deterioration with Ramp-Type demand, partial backlogging and inflation under trade credit financing. Int. J. Res. Commer. IT Manag. 2(2), 8–18 (2012). with ISSN 2231-5756

    Google Scholar 

  3. Bot, R.I., Lorewz, N.: Optimization problems in statistical learning: duality and optimality conditions. Eur. J. Oper. Res. 213(2), 395–404 (2011)

    Article  Google Scholar 

  4. Doumpos, M., Zopounidis, C.: Preference disaggregation and statistical learning for multicriteria decision support: a review. Eur. J. Oper. Res. 209(3), 203–214 (2011)

    Article  Google Scholar 

  5. Das, D., Roy, A., Kar, S.: A production inventory model for a deteriorating item incorporating learning effect using genetic algorithm. Adv. Oper. Res. 2011(146042), 26 (2011). doi:10.1155/2010/146042

    Google Scholar 

  6. Abdul, I., Murata, A.: A fast-response production-inventory model for deterioration seasonal products with learning in set-ups. Int. J. Ind. Eng. Comput. 2(2011), 715–736 (2011)

    Google Scholar 

  7. Glock, C.H., Jaber, M.Y., Zolfaghari, S.: Production planning for a ramp-up procers with learning in production and growth in demand. Int. J. Prod. Res. (2011). doi:10.1080/00207543

  8. Pathak, S., Sarkar (Mondal), S.: A three plant optimal production problem under variable inflation and demand with necessity constraint, imperfect quality and learning effects. J. Comput. Math. Sci. 1(7), 895–914 (2010)

    Google Scholar 

  9. Jaber, M., Bonney, Y., Moualek, I.: Lot sizing with learning, forgetting and entropy. Int. J. Prod. Econ. 118(1), 19–25 (2009)

    Article  Google Scholar 

  10. Tarakci, H., Tang, K., Teyarachakul, S.: Learning effects on maintenance out sourcing. Eur. J. Oper. Res. 192, 138–150 (2009)

    Article  Google Scholar 

  11. Villas-Boas, S.B., Villas-Boas, T.M.: Learning, forgetting, and sales. Manag. Sci. 54(11), 1951–1960 (2008)

    Article  Google Scholar 

  12. Wong, J.-B., Ng, C.T., Cheng, T.C.E., Liu, L.L.: Single-machine scheduling with a time dependent learning effect. Int. J. Prod. Econ. 111, 802–811 (2008)

    Article  Google Scholar 

  13. Jaber, M.Y., Bonney, M., Moualek, I.: Lot sizing with learning forgetting and entropy cost. Int. J. Prod. Econ. (2008)

  14. Jaber, M.Y., Goyel, S.K., Emraan, M.: An economic production quantity model for items with imperfect quality subject to learning effects. Int. J. Prod. Econ. 115, 143–1500 (2008)

    Article  Google Scholar 

  15. Chen, C.-K., Lo, C.-C., Liao, Y.-X.: Optimal lot size with learning consideration on an imperfect production system with allowable shortages. Int. J. Prod. Econ. 113, 459–469 (2008)

    Article  Google Scholar 

  16. Maity, M.K.: Fuzzy inventory model with two ware house under possibility measure on fuzzy goal. Eur. J. Oper. Res. 188, 746–774 (2008)

    Article  Google Scholar 

  17. Roy, A., Maity, K., Kar, S., Maity, M.: A production inventory model with remanufacturing for defective and usable items in fuzzy environment. Comput. Ind. Eng. 56, 87–96 (2008)

    Article  Google Scholar 

  18. Jaber, M.Y., Bonney, M.: Economic manufacturer quantity (EMQ) model with lot-size dependent learning and forgetting rates. Int. J. Prod. Econ. 108, 359–367 (2007)

    Article  Google Scholar 

  19. Alamri, A.A., Balkhi, Z.T.: The effects of learning and forgetting on the optimal production lot size for deteriorating items with time varing demands and deterioration rates. Int. J. Prod. Econ. 107, 125–138 (2007)

    Article  Google Scholar 

  20. Eren, T., Guner, E.: Minimizing total tardiness in a scheduling problem with a learning effect. Appl. Math. Model. 31, 1351–1361 (2007)

    Article  Google Scholar 

  21. Maiti, M.K., Maiti, M.: Fuzzy inventory model with two warehouses under possibility constraints. Fuzzy Set Syst. 157, 52–73 (2006)

    Article  Google Scholar 

  22. Wong, J.B., Xia, J.Q.: Flow-shop scheduling with a learning effect. J. Oper. Soc. 56, 1325–1330 (2005)

    Article  Google Scholar 

  23. Jaber, M.Y., Kher, H.V.: Variant versus invariant time to total forgetting; the learn–forget curve model revisited. Comput. Ind. Eng. 46, 697–705 (2004)

    Article  Google Scholar 

  24. Jaber, M.Y., Sikstrom, S.: A note on an empirical comparison of forgetting models. IEEE Trans. Eng. Manag. 51, 233–234 (2004)

    Article  Google Scholar 

  25. Jaber, M.Y., Kher, H.V., Davis, D.J.: Countering forgetting through training and deployment. Int. J. Prod. Econ. 85, 33–46 (2003)

    Article  Google Scholar 

  26. Liu, Y.K., Liu, B.A.: Class of fuzzy random optimization. Expected value models. Inf. Sci. 155, 89–102 (2003)

    Article  Google Scholar 

  27. Liu, B., Liu, Y.K.: Expected value of fuzzy variable and fuzzy expected value model. IEEE Trans. Fuzzy Syst. 10(4), 445–450 (2002)

    Article  Google Scholar 

  28. Nembhard, D.A., Osothsilp, N.: An empirical comparison of forgetting models. IEEE Trans. Eng. Manag. 48, 283–291 (2001)

    Article  Google Scholar 

  29. Jaber, M.Y., Boney, M.: The economic manufactured/ order quantity (emq/eoq) and the learning curve. Past, present and future. Int. J. Prod. Econ. 59, 93–102 (1999)

    Article  Google Scholar 

  30. Liu, B., Lwamura, K.B.: Chance constraint programming with fuzzy parameters. Fuzzy Set Syst. 94, 227–237 (1998)

    Article  Google Scholar 

  31. Dubois, D., Prade, H.: Possibility Theory. New York, London (1998)

  32. Jaber, M.Y., Boney, M.: The effect of learning and forgetting on the optimal lot size quantity of intermittent production runs. Prod. Plan. Control 9, 20–27 (1998)

    Article  Google Scholar 

  33. Jaber, M.Y., Boney, M.: A comparative study of learning curves with forgetting. Appl. Math. Model. 21, 523–531 (1997)

    Article  Google Scholar 

  34. Jaber, M.Y., Boney, M.: The effect of learning and forgetting on the economic manufactured quantity (EMQ) with consideration of intracycle back orders. Int. J. Prod. Econ. 53, 1–11 (1997)

    Article  Google Scholar 

  35. Jaber, M.Y., Boney, M.: Production breaks and the learning curve. The forgetting phenomenon. Appl. Math. Model. 20, 162–169 (1996)

    Article  Google Scholar 

  36. Elmaghraby, S.E.: Economic manufacturing quantities under conditions of learning and forgetting (EMQ/LAF). Prod. Plan. Control 1, 196–208 (1990)

    Article  Google Scholar 

  37. Zadeh, I.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Set Syst. 1, 3–28 (1978)

    Article  Google Scholar 

  38. Carlson, J.G., Rowe, R.G.: How much does forgetting cost? Ind. Eng. 8, 40–47 (1976)

    Google Scholar 

  39. Wright, T.: Factors affecting the cost of airplanes. J. Aeronaut. Sci. 3, 122–128 (1936)

    Google Scholar 

  40. Sikstrom, S., Jaber, M.Y.: The power integration diffusion (pid) model for production breaks. J. Exp. Psychol. Appl. 8, 118–126 (2002)

    Article  Google Scholar 

  41. Balkhi, Z.T.: The effect of learning on the optimal production lot size for deteriorating and partially backordered items with time varying demand and deterioration rates. Appl. Math. Model. 22, 763–779 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savita Pathak.

Appendices

Appendix A: Expected value operator

1.1 Possibility/necessity in fuzzy environment

Any fuzzy subset á of \( \Re \) (where \( \Re \) represents a set of real numbers) with membership function \( {\mu_{{\widetilde{\text{a}}}}}\left( {\text{x}} \right):\Re \to \left[ {0,{1}} \right] \) is called a fuzzy number. Let \( \widetilde{\text{a}} \) and \( \widetilde{\text{b}} \) be two fuzzy quantities with membership functions \( {\mu_{{\widetilde{\text{a}}}}} \) (x): and \( {\mu_{{\widetilde{\text{b}}}}} \) (x) respectively. Then according to Liu and Lwamura [30], Maiti and Maiti [21]

figure a

Where the abbreviation ‘Pos’ represents possibility and ‘Nes’ represents necessity and ‘*’ is any of the relations >, <, =, ≤, ≥.

The dual relationship of possibility and necessity requires that

$$ {\text{Nes}}\left( {\widetilde{\text{a}}*\widetilde{\text{b}}} \right) = 1 - {\text{Pos}}\left( {\overline {\widetilde{\text{a}} * \widetilde{\text{b}}} } \right) $$

Also necessity measures satisfy the condition

$$ {\text{Min}}\left( {{\text{Nes}}\left( {\widetilde{\text{a}} * \widetilde{\text{b}}} \right)} \right),\;{\text{Nes}}\left( {\overline {\widetilde{\text{a}} * \widetilde{\text{b}}} } \right) = 0 $$

The relationships between possibility and necessity measures satisfy also the following conditions (cf. Dubois and Prade (1997)):

$$ \left. {{\text{Pos}}\left( {\widetilde{\text{a}} * \widetilde{\text{b}}} \right) \geqslant {\text{Nes}}\left( {\widetilde{\text{a}} * \widetilde{\text{b}}} \right),{\text{Nes}}\left( {\widetilde{\text{a}} * \widetilde{\text{b}}} \right) > 0} \right) \Rightarrow {\text{Pos}}\left( {\widetilde{\text{a}} * \widetilde{\text{b}}} \right) = 1\,{\text{and}}\,{\text{Pos}}\left( {\widetilde{\text{a}} * \widetilde{\text{b}}} \right) < 1 \Rightarrow {\text{Nes}}\left( {\widetilde{\text{a}} * \widetilde{\text{b}}} \right) = 0 $$

If \( \widetilde{\text{a}} \), and \( \widetilde{\text{c}} = {\text{f}}\left( {\widetilde{\text{a}},\widetilde{\text{b}}} \right) \) where f: \( \Re \times \Re \to \Re \) be a binary Operation, then membership function \( {\mu_{{\widetilde{\text{c}}}}} \) of \( \widetilde{\text{c}} \) is defined as

figure b

Recently based on possibility measure and necessity measure, the third set function Cr, called credibility measure, analyzed by Liu and Liu [27] is as follows:

$$ {\text{Cr}}\left( {\widetilde{\text{A}}} \right) = \frac{1}{2}\left[ {{\text{Pos}}\left( {\widetilde{\text{A}}} \right) + {\text{Nes}}\left( {\widetilde{\text{A}}} \right)} \right]\,{\text{for}}\,{\text{any}}\,\widetilde{\text{A}}\,{\text{in}}\,{{2}^{\Re }} $$

Where \( {2^{\Re }} \) is the power set of \( \Re \).

It is easy to check that Cr satisfies the following conditions:

  1. i*

    Cr (Ø) = 0 and \( {\text{Cr}}\left( \Re \right) = 1 \);

  2. ii*

    \( {\text{Cr}}\left( {\widetilde{\text{A}}} \right) \leqslant {\text{Cr}}\left( {\widetilde{\text{B}}} \right) \) whenever A, B in \( {2^{\Re }} \) and \( {\text{A}} \subseteq {\text{B}} \)

Thus Cr is also a fuzzy measure defined on \( \left( {\Re, {2^{\Re }}} \right) \). Besides, Cr is self dual, i.e. \( {\text{Cr}}\left( {\widetilde{\text{A}}} \right) = 1 - {\text{Cr}}\left( {{{\widetilde{\text{A}}}^{\text{c}}}} \right) \) for any \( \widetilde{\text{A}} \) in \( {2^{\Re }} \).

In this Paper, based on the credibility measure the following form is defined as

$$ {\text{Cr}}\left( {\widetilde{\text{A}}} \right) = \left[ {\rho {\text{Pos}}\left( {\widetilde{\text{A}}} \right) + \left( {1 - \rho } \right){\text{Nes}}\left( {\widetilde{\text{A}}} \right)} \right] $$

(cf. Liu and Liu [27]) for any \( \widetilde{\text{A}} \) in \( {2^{\Re }} \) and 0 < ρ < 1. It also satisfies the above condition.

1.2 Triangular fuzzy number

Triangular fuzzy number (TFN) (\( \widetilde{\text{a}} \)) (see Fig. 1) is the fuzzy number with the membership function \( {\mu_{{\widetilde{\text{A}}}}} \)(x), a continuous mapping: \( {\mu_{{\widetilde{\text{A}}}}}\left( {\text{x}} \right) = \Re \to \left[ {0,1} \right] \),

$$ {\mu_{{\widetilde{\text{A}}}}}\left( {\text{x}} \right) = \left\{ {\matrix{ 0 \hfill &{{\text{for}} - \infty < x < {{\text{a}}_1}} \hfill \\ {\frac{{{\text{x}} - {{\text{a}}_1}}}{{{{\text{a}}_2} - {{\text{a}}_1}}}} \hfill &{{\text{for}}\;{{\text{a}}_1} \leqslant {\text{x}} \leqslant {{\text{a}}_2}} \hfill \\ {\frac{{{{\text{a}}_3} - {\text{x}}}}{{{{\text{a}}_3} - {{\text{a}}_2}}}} \hfill &{{\text{for}}\;{{\text{a}}_2} \leqslant {\text{x}} \leqslant {{\text{a}}_3}} \hfill \\ 0 \hfill &{{\text{for}}\;{{\text{a}}_3} \leqslant {\text{x}} \leqslant \infty } \hfill \\ }<!end array> } \right. $$

Lemma 1

The expected value of triangular fuzzy number \( \widetilde{\text{A}} = \left( {{{\text{a}}_{{1}}},{{\text{a}}_{{2}}},{{\text{a}}_{{3}}}} \right) \) is \( {\text{E}}\left( {\widetilde{\text{A}}} \right) = \frac{1}{2}\left[ {\left( {1 - \rho } \right){{\text{a}}_1} + {{\text{a}}_2} + \rho {{\text{a}}_3}} \right] \)

Proof 1

Let \( \widetilde{\text{A}} = \left( {{{\text{a}}_{{1}}},{{\text{a}}_{{2}}},{{\text{a}}_{{3}}}} \right) \) be a triangular fuzzy number. Then

$$ \begin{array}{*{20}{c}} {{\text{Pos}}\left( {\widetilde{{\text{A}}} \geqslant {\text{r}}} \right) = \left\{ {\begin{array}{*{20}{c}} 1 \hfill & {{\text{if}}\,{\text{r}} \leqslant {{{\text{a}}}_{2}}} \hfill \\ {\frac{{{{{\text{a}}}_{2}} - {\text{r}}}}{{{{{\text{a}}}_{2}} - {{{\text{a}}}_{1}}}}} \hfill & {{\text{if}}\,{{{\text{a}}}_{2}} \leqslant {\text{r}} \leqslant {{{\text{a}}}_{3}}} \hfill \\ 0 \hfill & {{\text{if}}\:{\text{r}} \geqslant {{{\text{a}}}_{3}}} \hfill \\ \end{array} } \right.} \\ {{\text{Nes}}\left( {\widetilde{{\text{A}}} \geqslant {\text{r}}} \right) = \left\{ {\begin{array}{*{20}{c}} 1 \hfill & {{\text{if }}\,{\text{r}} \leqslant {{{\text{a}}}_{1}},} \hfill \\ {\frac{{{{{\text{a}}}_{3}} - {\text{r}}}}{{{{{\text{a}}}_{2}} - {{{\text{a}}}_{1}}}}} \hfill & {{\text{if}}\,{{{\text{a}}}_{1}} \leqslant {\text{r}} \leqslant {{{\text{a}}}_{2}}} \hfill \\ 0 \hfill & {{\text{if}}\,{\text{r}} \geqslant {{{\text{a}}}_{2}}} \hfill \\ \end{array} } \right.} \\ \end{array} $$

The credibility measure for TFN can be defined as

$$ \begin{array}{*{20}{c}} {{\text{Cr}}\left( {\widetilde{{\text{A}}} \geqslant {\text{r}}} \right) = \left\{ {\begin{array}{*{20}{c}} 1 \hfill & {{\text{if}}\:{\text{r}} \leqslant {{{\text{a}}}_{1}}} \hfill \\ {\frac{{{\text{x}} - {{{\text{a}}}_{1}}}}{{{{{\text{a}}}_{2}} - {{{\text{a}}}_{1}}}} - \frac{{\left( {1 - \rho } \right){\text{r}}}}{{{{{\text{a}}}_{2}} - {{{\text{a}}}_{1}}}}} \hfill & {{\text{if}}\:{{{\text{a}}}_{1}} \leqslant {\text{r}} \leqslant {{{\text{a}}}_{2}}} \hfill \\ {\frac{{{{{\text{a}}}_{3}} - {\text{x}}}}{{{{{\text{a}}}_{3}} - {{{\text{a}}}_{2}}}}} \hfill & {{\text{if}}\:{{{\text{a}}}_{2}} \leqslant {\text{r}} \leqslant {{{\text{a}}}_{3}}} \hfill \\ 0 \hfill & {{\text{if }}\:{\text{r}} \geqslant {{{\text{a}}}_{3}}} \hfill \\ \end{array} } \right.} \\ {\underline {{\text{Cr}}} \left( {\widetilde{{\text{A}}} \leqslant {\text{r}}} \right) = \left\{ {\begin{array}{*{20}{c}} 0 \hfill & {{\text{if}}\:{\text{r}} \leqslant {{{\text{a}}}_{1}}} \hfill \\ {\rho \frac{{{\text{r}} - {{{\text{a}}}_{1}}}}{{{{{\text{a}}}_{2}} - {{{\text{a}}}_{1}}}}} \hfill & {{\text{if}}\:{{{\text{a}}}_{1}} \leqslant {\text{r}} \leqslant {{{\text{a}}}_{2}}} \hfill \\ {\frac{{{{{\text{a}}}_{3}} - \rho {{{\text{a}}}_{2}} - \left( {1 - \rho } \right){\text{r}}}}{{{{{\text{a}}}_{3}} - {{{\text{a}}}_{2}}}}} \hfill & {{\text{if}}\:{{{\text{a}}}_{2}} \leqslant {\text{r}} \leqslant {{{\text{a}}}_{3}}} \hfill \\ 1 \hfill & {{\text{if }}\:{\text{r}} \geqslant {{{\text{a}}}_{3}}} \hfill \\ \end{array} } \right.} \\ \end{array} $$

Based on the credibility measure, Liu and Liu [26, 27] presented the expected value operator of a fuzzy variable as follows:

Let \( \widetilde{\text{X}} \) be a normalized fuzzy variable. The expected value of the fuzzy variable \( \widetilde{\text{X}} \) is defined by

$$ {\text{E}}\left( {\widetilde{\text{X}}} \right) = \int_0^{\infty } {\left( {\widetilde{\text{X}} \geqslant {\text{r}}} \right){\text{dr}} - \int_{{ - \infty }}^0 {{\text{Cr}}\left( {\widetilde{\text{X}} \leqslant {\text{r}}} \right){\text{dr}}} } $$

When the right hand side of (7) is of form ∞-∞, the expected value can not be defined. Also, the expected value operation has been proved to be linear for bounded fuzzy variable, i.e., for any two bounded fuzzy variables \( \widetilde{\text{X}} \) and \( \widetilde{\text{Y}} \), we have \( {\text{E}}\left[ {{\text{a}}\widetilde{\text{X}} + {\text{b}}\widetilde{\text{Y}} = {\text{aE}}\left( {\widetilde{\text{X}}} \right) + {\text{bE}}\left( {\widetilde{\text{Y}}} \right)} \right. \) for any real numbers a and b. Then

$$ \matrix{ {{\text{E}}\left( {\widetilde{\text{A}}} \right) = \int_0^{\infty } {{\text{Cr}}\left( {\widetilde{\text{A}} \geqslant {\text{r}}} \right){\text{dr}} - \int_{{ - \infty }}^0 {{\text{Cr}}\left( {\widetilde{\text{A}} \leqslant {\text{r}}} \right){\text{dr}}} } } \\ { = \int_0^{{{{\text{a}}_1}}} {{\text{Cr}}\left( {\widetilde{\text{A}} \geqslant {\text{r}}} \right){\text{dr}} + \int_{{{{\text{a}}_1}}}^{{{{\text{a}}_2}}} {{\text{Cr}}\left( {\widetilde{\text{A}} \geqslant {\text{r}}} \right){\text{dr}} + \int_{{{{\text{a}}_2}}}^{{{{\text{a}}_3}}} {{\text{Cr}}\left( {\widetilde{\text{A}} \geqslant {\text{r}}} \right){\text{dr}} + \int_{{{{\text{a}}_3}}}^{{{{\text{a}}_4}}} {{\text{Cr}}\left( {\widetilde{\text{A}} \leqslant {\text{r}}} \right){\text{dr}}} } } } } \\ { = \frac{1}{{{ }2}}\left[ {\left( {1 - \rho } \right){{\text{a}}_1} + {{\text{a}}_2} + \rho {{\text{a}}_3}} \right]} \\ }<!end array> $$

1.3 Single programming problem under fuzzy expected value model

A general single-objective mathematical programming problem with fuzzy parameters in the objective function is of the following form:

$$ \matrix{ {\text{Max}} \hfill &{{\text{f}}\left( {{\text{u}},\widetilde{\xi }} \right)} \hfill \\ {{\text{Subject}}\,{\text{to}}\,{{\text{g}}_{\text{j}}}\left( {{\text{u}},\widetilde{\xi }} \right) \leqslant 0,} \hfill &{{\text{j}} = 1,2,\; \ldots \ldots {\text{k}},} \hfill \\ }<!end array> $$

Where u and \( \widetilde{\xi } \) are decision vector and fuzzy vector respectively. To convert the fuzzy objective and constraints to their crisp equivalents, Liu and Liu [27] proposed a new method to convert the problem into an equivalent single-objective fuzzy expected value model i.e. the equivalent crisp model is:

$$ \matrix{ {{\text{E}}\left[ {{\text{f}}\left( {{\text{u}},\widetilde{\xi }} \right)} \right]} \hfill &{} \hfill \\ {{\text{Subject}}\,{\text{to}}\,{\text{E}}\left[ {{{\text{g}}_{\text{j}}}\left( {{\text{u}},\widetilde{\xi }} \right)} \right] \leqslant 0,} \hfill &{{\text{j}} = 1,2,\; \ldots {\text{k}},} \hfill \\ }<!end array> $$

Appendix B: Checking the approximation of Zj

We have from Eqs. (37), (40) and (41)

$$ {\widehat{\text{t}}_{{1{\text{j}}}}} = {{\text{t}}_{{11}}}{\left( {{\beta_{\text{j}}} + {{\text{Q}}_{\text{j}}}} \right)^{{ - \left( {{\text{r}} + {l_{\text{j}}}} \right)}}} $$
(B.1)
$$ {\widehat{\text{t}}_{{1{\text{j}}}}}{\left( {{\beta_{\text{j}}} + {{\text{Q}}_{\text{j}}} + {{\text{Z}}_{\text{j}}}} \right)^{{{l_{\text{j}}}}}} = {{\text{t}}_{{11}}} $$
(B.2)
$$ {l_{\text{j}}} = {{{{\text{r}}\log \left( {{\beta_{\text{j}}} + {{\text{Q}}_{\text{j}}}} \right)}} \left/ {{\log \left[ {{{{1 + {{\text{Z}}_{\text{j}}}}} \left/ {{\left( {{\beta_{\text{j}}} + {{\text{Q}}_{\text{j}}}} \right)}} \right.}} \right]}} \right.} $$
(B.3)

Respectively, Substituting (A.1) in (A.2) we obtain

$$ \matrix{ {{{\left( {{\beta_{\text{j}}} + {{\text{Q}}_{\text{j}}} + {{\text{Z}}_{\text{j}}}} \right)}^{{{l_{\text{j}}}}}}{{\left( {{\beta_{\text{j}}} + {{\text{Q}}_{\text{j}}}} \right)}^{{ - \left( {{\text{r}} + {l_{\text{j}}}} \right)}}} = 1} \hfill \\ { \Rightarrow \left( {{\beta_{\text{j}}} + {{\text{Q}}_{\text{j}}} + {{\text{Z}}_{\text{j}}}} \right){{\left( {{\beta_{\text{j}}} + {{\text{Q}}_{\text{j}}}} \right)}^{{{{{ - \left( {{\text{r}} + {l_{\text{j}}}} \right)}} \left/ {{{l_{\text{j}}}}} \right.}}}} = 1} \hfill \\ { \Rightarrow \left( {{\beta_{\text{j}}} + {{\text{Q}}_{\text{j}}} + {{\text{Z}}_{\text{j}}}} \right){{\frac{{\left( {{\beta_{\text{j}}} + {{\text{Q}}_{\text{j}}}} \right)}}{{\left( {{\beta_{\text{j}}} + {{\text{Q}}_{\text{j}}}} \right)}}}^{{{{{ - \left( {\text{r}} \right)}} \left/ {{{l_{\text{j}}}}} \right.}}}} = 1} \hfill \\ { \Rightarrow {{\left( {{\beta_{\text{j}}} + {{\text{Q}}_{\text{j}}}} \right)}^{{{{{ - \left( {\text{r}} \right)}} \left/ {{{l_{\text{j}}}}} \right.}}}} + {{\text{Z}}_{\text{j}}}{{\frac{{\left( {{\beta_{\text{j}}} + {{\text{Q}}_{\text{j}}}} \right)}}{{\left( {{\beta_{\text{j}}} + {{\text{Q}}_{\text{j}}}} \right)}}}^{{{{{ - \left( {\text{r}} \right)}} \left/ {{{l_{\text{j}}}}} \right.}}}} = 1} \hfill \\ { \Rightarrow {{{{{\text{Z}}_{\text{j}}}}} \left/ {{\left( {{\beta_{\text{j}}} + {{\text{Q}}_{\text{j}}}} \right)}} \right.} = \left\{ {{{1} \left/ {{{{\left( {{\beta_{\text{j}}} + {{\text{Q}}_{\text{j}}}} \right)}^{{{{{ - \left( {\text{r}} \right)}} \left/ {{{l_{\text{j}}}}} \right.}}}}}} \right.}} \right\}{{{ - 1 \cong 1}} \left/ {{{{\text{t}}_{{1{\text{j}}}}}}} \right.}} \hfill \\ }<!end array> $$
(B.4)

where t1j = t11j + 1)−r. Note here that our goal is to suggest an approximation form of Zj, which depends upon the value of lj, where these two values are somehow difficult to estimate. In the last relation, the value of t1j is considered as a constant only for approximation purpose, elsewhere, t1j is the time needed to produce the first unit in cycle j, which is measured in units of time/unit. This approximation is simply our suggestion to overcome the inadequacy in the assumption that the value of total forgetting is fixed. Therefore substituting (A.4) in (A.3), the forgetting slope can be rewritten as

$$ {l_j} = {{{{\text{r}}\log \left( {{\beta_{\text{j}}} + {{\text{Q}}_{\text{j}}}} \right)}} \left/ {{\log \left[ {1 + {{1} \left/ {{{{\text{t}}_{{1{\text{j}}}}}}} \right.}} \right]}} \right.} $$
(B.5)

As the approximation of Zj/(βj + Qj) by 1/t1j produces very close results for the parameters suggested in Tables 2, 3, 4 and 5.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pathak, S., Kar, S. & Sarkar (Mondal), S. Fuzzy production inventory model for deteriorating items with shortages under the effect of time dependent learning and forgetting: a possibility / necessity approach. OPSEARCH 50, 149–181 (2013). https://doi.org/10.1007/s12597-012-0102-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12597-012-0102-5

Keywords

Navigation