Skip to main content
Log in

Optimization of microstructred fiber’s mode distribution for high speed data transmission

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract  

Photonic crystal fibers (PCFs) have drawn significant attention in recent years due to their unique properties and potential applications in various fields. In this paper, investigations are done on the mode distribution and structural parameter optimization of a PCF for both wavelength division multiplexing (WDM) and insulator applications. Finite difference time domain method is used for field distribution. Extensive MATLAB simulations are performed to analyze the mode distribution of the PCF. Simulated results show that the mode distribution is highly dependent on the structural parameters of the fiber, such as the photonic crystal lattice period, element radius, refractive index of the background material and photonic crystal elements. Furthermore, the effect of the structural parameters on the dispersion and attenuation of the PCF is also investigated. It has been demonstrated that the structural parameters of PCFs can be adjusted to achieve low dispersion and attenuation so that the PCF can be suitable for WDM and insulator applications. The simulation results are presented to validate the claims and various applications and use cases of the proposed structure are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K. Prabu, R. Malavika, Highly birefringent photonic crystal fiber with hybrid cladding. Opt. Fiber Technol. 47, 21–26 (2019)

    Article  ADS  Google Scholar 

  2. P. Blandin, F. Druon, M. Hanna, S. Lévêque-Fort, M.P. Fontaine-Aupart, C. Lesvigne, V. Couderc, P. Leproux, P. Georges, Supercontinuum generation in a highly birefringent photonic crystal fiber seeded by a low-repetition rate picosecond infrared laser. In Int. Quantum Elect Conf. p. IE_8, (2007)

  3. Z. Lijuan, L. Ruoyu, Z. Haiying, X. Zhiniu, Design of a photonic crystal fiber with low confinement loss and high birefringence. Opto-Electron. Eng. 48(3), 200368 (2021)

    Google Scholar 

  4. F. Yu, Z. Wang, Y. Zhang, Y. Yu, C. Lv, Analysis of a highly birefringent photonic crystal fiber with ellipse rhombus air core. Optik 125(20), 6266 (2014)

    Article  ADS  Google Scholar 

  5. S.S. Mishra, V.K. Singh, Highly birefringent photonic crystal fiber with low confinement loss at wavelength 1.55 μm. Optik 122(22), 1975 (2011)

    Article  ADS  Google Scholar 

  6. A. Upadhyay, S. Singh, Y.K. Prajapati, R. Tripathi, Numerical analysis of large negative dispersion and highly birefringent photonic crystal fiber. Optik 218, 164997 (2020)

    Article  ADS  Google Scholar 

  7. S. Kawanishi, Design and fabrication of photonic crystal fibers for high-performance systems and devices. In Opt. Transm. Syst. Equip. WDM Netw. III 5596, 280–291 (2004)

    ADS  Google Scholar 

  8. W. Chen, S. Lou, L. Wang, S. Feng, W. Lu, S. Jian, In-fiber modal interferometer based on dual-concentric-core photonic crystal fiber and its strain, temperature and refractive index characteristics. Opt. Commun. 284(12), 2829 (2011)

    Article  ADS  Google Scholar 

  9. A.M.R. Pinto, M. Lopez-Amo, Photonic crystal fibers for sensing applications. J. Sens. 2012, 21, (2012). https://doi.org/10.1155/2012/598178

  10. V. Portosi, D. Laneve, M.C. Falconi, F. Prudenzano, Advances on photonic crystal fiber sensors and applications. Sensors 19(8), 1892 (2019)

    Article  ADS  Google Scholar 

  11. P.M.W. Skovgaard, J. Broeng, M.D. Nielsen, A. Petersson, H.R. Simonsen, J.R. Folkenberg C. Jacobsen, T.P. Hansen, K.P. Hansen, Recent progress on photonic crystal fibers for high power laser applications. In The 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society LEOS 2004, 2 953, (2004)

  12. A.A. Rifat, G.A. Mahdiraji, Y.G. Shee, M.J. Shawon, F.M. Adikan, A novel photonic crystal fiber biosensor using surface plasmon resonance. Procedia Eng. 140, 1 (2016)

    Article  Google Scholar 

  13. M.E. Fermann, I. Hartl, Ultrafast fibre lasers. Nat. Photon. 7(11), 868 (2013)

    Article  ADS  Google Scholar 

  14. M. Rachana, I. Charles, S. Swarnakar, S.V. Krishna, S. Kumar, Recent advances in photonic crystal fiber-based sensors for biomedical applications. Opt. Fiber Technol. 74, 103085 (2022)

    Article  Google Scholar 

  15. Y.Y. Wang, X. Peng, M. Alharbi, C.F. Dutin, T.D. Bradley, F. Gérôme, F. Benabid, Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression. Opt. Lett. 37(15), 3111 (2012)

    Article  ADS  Google Scholar 

  16. A.M. Pinto, M. Lopez-Amo, All-fiber lasers through photonic crystal fibers. Nano Photon. 2(56), 355–368 (2013)

    ADS  Google Scholar 

  17. K. Ieda, K. Kurokawa, K. Tajima, K. Nakajima, Visible to infrared high-speed WDM transmission over PCF. IEICE Electron. Express 4(12), 375–379 (2007)

    Article  Google Scholar 

  18. B. Avizit, M. Rahman, Performance Evaluation of a Square Lattice Micro- Structure Optical Fibre in Communication & Multiplexing Technique. Global J. Inc. (USA), 13(12) (2013)

  19. Z. Wang, Y. Chong, J.D. Joannopoulos, M. Soljačić, "Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461(7265), 772–775 (2009)

    Article  ADS  Google Scholar 

  20. G.G. Gentili, G. Pelosi, F.S. Piccioli, S. Selleri, Towards topological protection based millimeter wave devices. Phys. Rev. B. 100(12), 125108 (2019)

    Article  ADS  Google Scholar 

  21. S. Ma, B. Xiao, Y. Yang, K. Lai, G. Shvets, S.M. Anlage, Topologically protected photonic modes in composite quantum Hall/quantum spin Hall waveguides. Phys Rev B 100(8), 085118 (2019)

    Article  ADS  Google Scholar 

  22. L.H. Wu, X. Hu, Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 114(22), 223901 (2015)

    Article  ADS  Google Scholar 

  23. S Ma, S.M Anlage, Microwave applications of photonic topological insulators. Appl. Phys. Lett. 116(25) (2020)

  24. C.S. Mishra, Design and analysis of L shape photonic waveguide for realisation of power amplifier application. Opt. Mater. 127, 112298 (2022)

    Article  Google Scholar 

  25. C.S. Mishra, A. Nayyar, G. Suseendran, G. Palai, L-shape Si-waveguide for THz-communication. Opt.-Int. J. Light Electron Opt. 178, 509–512 (2019)

    Article  Google Scholar 

  26. C.S. Mishra, G. Palai, D. Prakash, K.D. Verma, S.K. Tripathy, Analysis of HLB pass filter using silicon photonics structure. Opt.-Int. J. Light Electron Opt. 144, 522–527 (2017)

    Article  Google Scholar 

  27. F. Luan, A.K. George, T.D. Hedley, G.J. Pearce, D.M. Bird, J.C. Knight, P.S.J. Russell, All-solid photonic bandgap fiber. Opt. Lett. 29(20), 2369 (2004)

    Article  ADS  Google Scholar 

  28. E.A. Hagras, M.F.O. Hameed, S.S.A. Obayya, Compact dual-core liquid crystal photonic crystal fiber polarization splitter for terahertz applications. Optik 265, 169396 (2022)

    Article  ADS  Google Scholar 

  29. H. Liang, T. Shen, Y. Feng, Z. Xia, H. Liu, A surface plasmon resonance temperature sensing unit based on a graphene oxide composite photonic crystal fiber. IEEE Photon. J. 12(3), 1 (2020)

    Article  Google Scholar 

  30. S. Olyaee, F. Taghipour, Ultra-flattened dispersion photonic crystal fiber with low confinement loss, In Proceedings of the 11th International Conference on Telecommunications (pp. 531–534) IEEE (2011)

  31. K. Nakajima, T. Matsui, K. Kurokawa, K. Tajima, I. Sankawa, High-speed and wideband transmission using dispersion-compensating/managing photonic crystal fiber and dispersion-shifted fiber. J. Light Wave Technol. 25(9), 2719 (2007)

    Article  ADS  Google Scholar 

  32. M. Farkas, N. Guerrero, J. Cariñe, G. Cañas, G. Lima, Self-testing mutually unbiased bases in higher dimensions with space-division multiplexing optical fiber technology. Phys. Rev. Appl. 5(1), 28 (2021)

    Google Scholar 

  33. C. Mao, B. Huang, Y. Wang, Y. Huang, L. Zhang, Y. Shao, Y. Wang, High-sensitivity gas pressure sensor based on hollow-core photonic bandgap fiber Mach-Zehnder interferometer. Opt. Express 26(23), 30108 (2018)

    Article  ADS  Google Scholar 

  34. M. Sharma, P. Pradhan, B. Ung, Endlessly mono-radial annular core photonic crystal fiber for the broadband transmission and supercontinuum generation of vortex beams. Sci. Rep. 9(1), 2488 (2019)

    Article  ADS  Google Scholar 

  35. Z. He, C. Li, W. Cui, W. Xue, Z. Li, L. Pu, M. Wang, Dual-Fano resonances and sensing properties in the crossed ring-shaped metasurface. Results Phys. 16, 103140 (2020)

    Article  Google Scholar 

  36. P.S. Maji, P.R. Chaudhuri, Design of all-normal dispersion based on multi-material photonic crystal fiber in IR region for broadband supercontinuum generation. Appl. Opt. 54(13), 4042 (2015)

    Article  ADS  Google Scholar 

  37. G. Ren, P. Shum, L. Zhang, X. Yu, W. Tong, J. Lu, Low-loss all-solid photonic bandgap. Fiber Opt. Lett. 32(9), 1023 (2007)

    Article  ADS  Google Scholar 

  38. W. Wang, N. Wang, K. Li, Z. Geng, H. Jia, A novel dual guided modes regions photonic crystal fiber with low crosstalk supporting 56 OAM modes and 4 LP modes. Opt. Fiber Technol. 57, 102213 (2020)

    Article  Google Scholar 

  39. M.S. Habib, E. Khandker, Highly birefringent photonic crystal fiber with ultra-flattened negative dispersion over S+ C+ L+ U bands. Appl. Opt. 54(10), 2786 (2015)

    Article  ADS  Google Scholar 

  40. V.A. Semenov, A.V. Belov, E.M. Dianov, A.A. Abramov, M.M. Bubnov, S.L. Semjonov, N.N. Vechkanov, Broadband dispersion-compensating fiber for high-bit-rate transmission network use. Appl. Opt. 34(24), 5331 (1995)

    Article  ADS  Google Scholar 

  41. M. Zhou, H. Yang, P. Jiang, W. Caiyang, Y. Qin, B. Cao, Design and analysis of hollow core Bragg fibers array for space division multiplexing. Results Phys. 30, 104877 (2021)

    Article  Google Scholar 

  42. L.C. Van, K.D. Xuan, T. Le Canh, T.T. Doan, T.N. Thi, H. Van Le, Supercontinuum generation in chalcogenide photonic crystal fiber infiltrated with liquid. Opt. Mater. 137, 113547 (2023)

    Article  Google Scholar 

  43. Y. Zhang, Z. Yi, X. Wang, P. Chu, W. Yao, Z. Zhou, Y. Yi, Dual band visible metamaterial absorbers based on four identical ring patches. Physica. E: Low-Dimens. Sys. Nanostructures 127, 114526 (2021)

    Article  Google Scholar 

  44. Y. Huang et al., Design of photonic crystal fibers with flat dispersion and three zero dispersion wavelengths for coherent supercontinuum generation in both normal and anomalous regions. Results Phys. 23, 104033 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopinath palai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misra, S., Bala, I., Swain, K. et al. Optimization of microstructred fiber’s mode distribution for high speed data transmission. J Opt (2024). https://doi.org/10.1007/s12596-024-01881-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01881-3

Keywords

Navigation