Skip to main content
Log in

Ultra-Low Material Loss Quasi Pattern Based Photonic Crystal Fiber for Long Distance THz Wave Propagation

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this study, photonic crystal fiber in quasi pattern (Q-PCF) has been proposed at the terahertz (THz) regime. In Q-PCF, the core area is designed using the two elliptical air holes for the best performance of optical communications to obtain the ultra-low effective material loss (EML). In Q-PCF, perfectly matched layer (PML) and the finite element method (FEM) have been applied to simulate the desired outcomes. The mentioned Q-PCF is optimized by shifting the core diameter, cladding air holes pitch and diameter, porosity of the model, and background materials. The numerically controlled outcomes ensure an EML of 0.01542 cm−1 with high power fraction response at 1 THz frequency. In addition, other loss profiles and operating modes have also been well described. Moreover, operating mode profile indicates single mode propagation up to 2.2 THz operating frequency. The noted outcomes ensure that the designed structure will be perfectly suitable for long distance broadband optical communication applications in THz technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbott D, Zhang XC (2007) Special issue on T-ray imaging, sensing, and retection. Proc IEEE 95(8):1509–1513

    Article  Google Scholar 

  2. Biswas U, Rakshit JK, Bharti GK (2020) Design of photonic crystal microring resonator based all-optical refractive-index sensor for analyzing different milk constituents. Opt Quant Electron 52(1):19

    Article  CAS  Google Scholar 

  3. Ramanujam NR, El-Khozondar HJ, Dhasarathan V, Taya SA, Aly AH (2019) Design of one dimensional defect based photonic crystal by composited superconducting material for bio sensing applications. Phys B Condens Matter 572:42–55

    Article  CAS  Google Scholar 

  4. Amiri IS, Paul BK, Ahmed K, Aly AH, Zakaria R, Yupapin P, Vigneswaran D (2019) Tri-core photonic crystal fiber based refractive index dual sensor for salinity and temperature detection. Microw Opt Technol Lett 61(3):847–852

    Article  Google Scholar 

  5. Biswas, U., Bharti, G. K., and Rakshit, J. K. (2019, September). Design of Photonic Crystal Based Optical Sensor for analyzing water content in Milk. In international conference on innovation in modern science and technology (pp. 143-149). Springer, Cham

  6. Shaban SM, Mehaney A, Aly AH (2020) Determination of 1-propanol, ethanol, and methanol concentrations in water based on a one-dimensional phoxonic crystal sensor. Appl Opt 59(13):3878–3885

    Article  CAS  Google Scholar 

  7. Akter, S., Ahmed, K., El-Naggar, S. A., Taya, S. A., Nguyen, T. K., and Dhasarathan, V. (2020). Highly sensitive refractive index sensor for temperature and salinity measurement of seawater. Optik, 164901

  8. Aly AH, Zaky ZA, Shalaby AS, Ahmed AM, Vigneswaran D (2020) Theoretical study of hybrid multifunctional one-dimensional photonic crystal as a flexible blood sugar sensor. Phys Scr 95(3):035510

    Article  CAS  Google Scholar 

  9. Awad MA, Aly AH (2019) Experimental and theoretical studies of hybrid multifunctional TiO2/TiN/TiO2. Ceram Int 45(15):19036–19043

    Article  CAS  Google Scholar 

  10. Aly AH, Ghany SSA, Kamal BM, Vigneswaran D (2020) Theoretical studies of hybrid multifunctional YaBa2Cu3O7 photonic crystals within visible and infra-red regions. Ceram Int 46(1):365–369

    Article  CAS  Google Scholar 

  11. Rogalski, A. (2018). Terahertz Detectors. Encyclopedia of Modern Optics, 418

  12. Islam MS, Rana S, Islam MR, Faisal M, Rahman H, Sultana J (2016) Porous core photonic crystal fibre for ultra-low material loss in THz regime. IET Commun 10(16):2179–2183

    Article  Google Scholar 

  13. Wang K, Mittleman DM (2004) Metal wires for terahertz wave guiding. Nature 432(7015):376–379

    Article  CAS  Google Scholar 

  14. Aly AH, Sayed FA (2020) THz cutoff frequency and multifunction Ti2Ba2Ca2 Cu3O10/GaAs photonic bandgap materials. Int J Mod Phys B 34(10):2050091

    Article  CAS  Google Scholar 

  15. Skorobogatiy M, Dupuis A (2007) Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance. Appl Phys Lett 90(11):113514

    Article  Google Scholar 

  16. Jeon TI, Zhang J, Grischkowsky DJAPL (2005) THz Sommerfeld wave propagation on a single metal wire. Appl Phys Lett 86(16):161904

    Article  Google Scholar 

  17. Chen LJ, Chen HW, Kao TF, Lu JY, Sun CK (2006) Low-loss subwavelength plastic fiber for terahertz waveguiding. Opt Lett 31(3):308–310

    Article  Google Scholar 

  18. Hassani A, Dupuis A, Skorobogatiy M (2008) Porous polymer fibers for low-loss terahertz guiding. Opt Express 16(9):6340–6351

    Article  Google Scholar 

  19. Tang X, Jiang Y, Sun B, Chen J, Zhu X, Zhou P, Wu D, Shi Y (2013) Elliptical Hollow Fiber With Inner Silver Coating for Linearly Polarized Terahertz Transmission. IEEE Photon Technol Lett 25:331–334

    Article  CAS  Google Scholar 

  20. Yuan W, Khan L, Webb DJ, Kalli K, Rasmussen HK, Stefani A, Bang O (2011) Humidity insensitive TOPAS polymer fiber Bragg grating sensor. Opt Express 19(20):19731–19739

    Article  CAS  Google Scholar 

  21. Goto M, Quema A, Takahashi H, Ono S, Sarukura N (2004). Jpn J Appl Phys 43:317

    Article  Google Scholar 

  22. Pastorelli G, Trafela T, Taday PF, Portieri A, Lowe D, Fukunaga K, Strlič M (2012) Characterisation of historic plastics using terahertz time-domain spectroscopy and pulsed imaging. Anal Bioanal Chem 403(5):1405–1414

    Article  CAS  Google Scholar 

  23. Jiang X, Joly NY, Finger MA, Babic F, Wong GK, Travers JC, Russell PSJ (2015) Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre. Nat Photonics 9(2):133–139

    Article  CAS  Google Scholar 

  24. Aly AH, Sayed FA, Elsayed HA (2020) Defect mode tunability based on the electro-optical characteristics of the one-dimensional graphene photonic crystals. Appl Opt 59(16):4796–4805

    Article  CAS  Google Scholar 

  25. Islam MS, Sultana J, Rana S, Islam MR, Faisal M, Kaijage SF, Abbott D (2017) Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission. Opt Fiber Technol 34:6–11

    Article  CAS  Google Scholar 

  26. Rana S, Hasanuzzaman GKM, Habib MS, Kaijage SF, Islam R (2014) Proposal for a low loss porous core octagonal photonic crystal fiber for T-ray wave guiding. Opt Eng 53(11):115107

    Article  Google Scholar 

  27. Islam R, Rana S, Ahmad R, Kaijage SF (2015) Bend-insensitive and low-loss porous core spiral terahertz fiber. IEEE Photon Technol Lett 27(21):2242–2245

    Article  CAS  Google Scholar 

  28. Hasan MR, Islam MA, Rifat AA (2016) A single mode porous-core square lattice photonic crystal fiber for THz wave propagation. Journal of the European Optical Society-Rapid Publications 12(1):1–8

    Article  Google Scholar 

  29. Ahmed K, Paul BK, Chowdhury S, Sen S, Islam MI, Islam MS, Hasan MR, Asaduzzaman S (2017) Design of a single-mode photonic crystal fibre with ultra-low material loss and large effective mode area in THz regime. IET Optoelectron 11(6):265–271

    Article  Google Scholar 

  30. Sultana J, Islam MS, Faisal M, Islam MR, Ng BWH, Ebendorff-Heidepriem H, Abbott D (2018) Highly birefringent elliptical core photonic crystal fiber for terahertz application. Opt Commun 407:92–96

    Article  CAS  Google Scholar 

  31. Sultana J, Islam MR, Faisal M, Talha KMA, Islam MS (2019) Design and analysis of a Zeonex based diamond-shaped core kagome lattice photonic crystal fiber for T-ray wave transmission. Opt Fiber Technol 47:55–60

    Article  Google Scholar 

  32. Paul BK, Ahmed K (2020) Analysis of terahertz waveguide properties of Q-PCF based on FEM scheme. Opt Mater 100:109634

    Article  CAS  Google Scholar 

  33. Ahmed K, Islam MI, Paul BK, Islam MS, Sen S, Chowdhury S, Uddin MS, Asaduzzaman S, Bahar AN (2017) Effect of photonic crystal fiber background materials in sensing and communication applications. Materials discovery 7:8–14

    Article  Google Scholar 

  34. Islam R, Habib MS, Hasanuzzaman GKM, Rana S, Sadath MA, Markos C (2016) A novel low-loss diamond-core porous fiber for polarization maintaining terahertz transmission. IEEE Photon Technol Lett 28(14):1537–1540

    Article  Google Scholar 

  35. Hasan MR, Islam MA, Anower MS, Razzak SMA (2016) Low-loss and bend-insensitive terahertz fiber using a rhombic-shaped core. Appl Opt 55(30):8441–8447

    Article  CAS  Google Scholar 

  36. Ahmed K, Chowdhury S, Paul BK, Islam MS, Sen S, Islam MI, Asaduzzaman S (2017) Ultrahigh birefringence, ultralow material loss porous core single-mode fiber for terahertz wave guidance. Appl Opt 56(12):3477–3483

    Article  CAS  Google Scholar 

  37. Paul BK, Bhuiyan T, Abdulrazak LF, Sarker K, Hassan MM, Shariful S, Ahmed K (2019) Extremely low loss optical waveguide for terahertz pulse guidance. Results in Physics 15:102666

    Article  Google Scholar 

  38. Islam MS, Sultana J, Ahmed K, Islam MR, Dinovitser A, Ng BWH, Abbott D (2017) A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime. IEEE Sensors J 18(2):575–582

    Article  Google Scholar 

  39. Islam MS, Sultana J, Rifat AA, Dinovitser A, Ng BWH, Abbott D (2018) Terahertz sensing in a hollow core photonic crystal fiber. IEEE Sensors J 18(10):4073–4080

    Article  CAS  Google Scholar 

  40. El Hamzaoui H, Ouerdane Y, Bigot L, Bouwmans G, Capoen B, Boukenter A et al (2012) Sol-gel derived ionic copper-doped microstructured optical fiber: a potential selective ultraviolet radiation dosimeter. Opt Express 20(28):29751–29760

    Article  Google Scholar 

Download references

Acknowledgements

No funding was received for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kawsar Ahmed.

Ethics declarations

Conflict of Interest

There is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, S., Hasan, M.M. & Ahmed, K. Ultra-Low Material Loss Quasi Pattern Based Photonic Crystal Fiber for Long Distance THz Wave Propagation. Silicon 13, 1663–1673 (2021). https://doi.org/10.1007/s12633-020-00554-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00554-7

Keywords

Navigation