Skip to main content
Log in

FASnI3 and FAMASnGeI3 as absorbers with TCOs as ETLs for eco-friendly high-performance perovskite solar cells

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

This work presents a study on novel lead-free Perovskite Solar Cells (PSCs) based on new lead-free absorbers (FASnI3 and FAMASnGeI3) that have been designed, optimized and analyzed through comparison with other experimental works in literature for high-performance, eco-friendly and cost-effective solar photovoltaic devices by working upon materials, interfaces and device structures. The work focuses on maximizing PSC efficiency and eliminating Sulphur and Lead-based elements. PSCs have been designed with lead-based absorbers (MAPbI3) and lead-free absorbers (FASnI3 and FAMASnGeI3) having Electron Transport Layer (ETL) material using Transparent conducting oxides (TCOs) ( TiO2, ZnO, WO3, and IGZO) and sulphides ( ZnS, WS2, CdS, and CdZnS). The input parameters, such as thickness, bandgap, and interface defect variation for ETL and absorber materials, have been considered for device analysis. The optimized PSC structures' electric current flow and thermal diffusivity have been further tuned to get optimum results. The performance evaluation of the PSCs has been conducted based on the critical output performance of the parameters, namely Power Conversion Efficiency (PCE), open circuit voltage (VOC), Fill Factor (FF) and current density (JSC). Among lead-based PSCs, the PCBM-based PSC with the structure PCBM/MAPbI3/Spiro MeOTAD exhibited tunable power conversion efficiency (PCE) of 21.03%, with JSC of 23.40 mA/cm2, VOC of 1.02 V, and FF of 83.74%. Among the lead-free PSCs, the device structure PCBM/FAMASnGeI3/PEDOT:PSS, optimized by adjusting the ETL (PCBM) and absorber (FAMASnGeI3), demonstrated a tunable PCE of 33.42%, with JSC: 28.61 mA/cm2, VOC: 1.358 V with FF of 82.86%. The maximum achieved PCE for the lead-free and lead-based PSCs discussed in this study has been 33.42% and 31.21%, respectively. This work provides valuable insights into selecting suitable eco-friendly absorber materials, the optimal high-performance design, and environmentally friendly PSCs for upcoming research developments. The results presented in this paper can guide researchers in identifying the most suitable materials and optimizing the development of highly effective, eco-friendly photovoltaic solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S.G. Motti, D. Meggiolaro, S. Martani, R. Sorrentino, A.J. Barker, F. De Angelis, A. Petrozza, Defect Activity in Lead Halide Perovskites. Adv. Mater. 31, 1–11 (2019). https://doi.org/10.1002/adma.201901183

    Article  Google Scholar 

  2. Singh, P., Kumar, A.: Device Engineering of Highly ‑ Efficient Eco ‑ Friendly Novel ­ FASnI 3 Based Tandem Photovoltaic Cells. Silicon. 16,  687–701 (2024). https://doi.org/10.1007/s12633-023-02717-8

  3. Singh, P., Kumar, A.: Device engineering of double perovskite based solar cells towards high-performance, eco-friendly solar cells. Opt. Quantum Electron. 55, (2023)(b). https://doi.org/10.1007/s11082-023-04580-8

  4. Yin, W.J., Shi, T., Yan, Y.: Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, (2014). https://doi.org/10.1063/1.4864778

  5. P. Kumar, A. Kumar, High - performance optimization and analysis of ­ Cs 2 AgBiBr 6 - based lead - free double perovskite solar cells. J Mater Sci Mater Electron. 34, 1–15 (2023). https://doi.org/10.1007/s10854-023-11225-9

    Article  Google Scholar 

  6. T. Wu, X. Liu, X. Luo, H. Segawa, G. Tong, Y. Zhang, L.K. Ono, Y. Qi, L. Han, Heterogeneous FASnI3 Absorber with Enhanced Electric Field for High-Performance Lead-Free Perovskite Solar Cells. Nano-Micro Lett. 14, 1–14 (2022). https://doi.org/10.1007/s40820-022-00842-4

    Article  ADS  Google Scholar 

  7. X. Zhang, H. Zhou, C. Hu, Y. Zhao, X. Ma, J. Wu, Y. Qi, W. Fang, S. Jia, J. Yu, Performance analysis of all-inorganic Cs3Sb2I9 perovskite solar cells with micro-offset energy level structure by SCAPS-1D simulation and First-principles calculation. Sol. Energy Mater. Sol. Cells 260, 1–14 (2023). https://doi.org/10.1016/j.solmat.2023.112487

    Article  Google Scholar 

  8. Serhan, M., Sprowls, M., Jackemeyer, D., Long, M., Perez, I.D., Maret, W., Tao, N., Forzani, E.: Total iron measurement in human serum with a smartphone. AIChE Annu. Meet. Conf. Proc. 2019-Novem, 2012–2014 (2019). https://doi.org/10.1039/x0xx00000x

  9. D. Umadevi, G.W. Watson, Quasiparticle GW Calculations on Lead-Free Hybrid Germanium Iodide Perovskite CH 3 NH 3 GeI 3 for Photovoltaic Applications. ACS Omega 4, 5661–5669 (2019). https://doi.org/10.1021/acsomega.8b03291

    Article  Google Scholar 

  10. Hima, A., Lakhdar, N.: Enhancement of efficiency and stability of CH3NH3GeI3 solar cells with CuSbS2. Opt. Mater. (Amst). 99, (2020). https://doi.org/10.1016/j.optmat.2019.109607

  11. Z. Li, R. Wang, J. Xue, X. Xing, C. Yu, T. Huang, J. Chu, K.L. Wang, C. Dong, Z. Wei, Y. Zhao, Z.K. Wang, Y. Yang, Core-Shell ZnO@SnO2 Nanoparticles for Efficient Inorganic Perovskite Solar Cells. J. Am. Chem. Soc. 141, 17610–17616 (2019). https://doi.org/10.1021/jacs.9b06796

    Article  Google Scholar 

  12. N. Ito, M.A. Kamarudin, D. Hirotani, Y. Zhang, Q. Shen, Y. Ogomi, S. Iikubo, T. Minemoto, K. Yoshino, S. Hayase, Mixed Sn-Ge Perovskite for Enhanced Perovskite Solar Cell Performance in Air. J. Phys. Chem. Lett. 9, 1682–1688 (2018). https://doi.org/10.1021/acs.jpclett.8b00275

    Article  Google Scholar 

  13. Minemoto, T., Kawano, Y., Nishimura, T., Shen, Q., Yoshino, K., Iikubo, S., Hayase, S., Chantana, J.: Theoretical analysis of band alignment at back junction in Sn–Ge perovskite solar cells with inverted p-i-n structure. Sol. Energy Mater. Sol. Cells. 206, (2020). https://doi.org/10.1016/j.solmat.2019.110268

  14. N.K. Singh, A. Agarwal, A.K. Singh, S.N. Singh, Design and performance evaluation of eco-friendly FASnI3/CsSn0.5Ge0.5I3 based perovskite solar cell with distinct charge transport layer: A computational modeling. Sol. Energy. 268, 112256 (2024). https://doi.org/10.1016/j.solener.2023.112256

    Article  ADS  Google Scholar 

  15. Saranya, K., Janarthanan, B.: Progress and challenges of lead free halide perovskite materials for perovskite solar cell applications. J. Mol. Struct. 1287, (2023). https://doi.org/10.1016/j.molstruc.2023.135663

  16. Bhattarai, S., Mohammed, M.K.A., Madan, J., Pandey, R., Ansari, M.Z., Zaki Rashed, A.N., Amami, M., Hossain, M.K.: Performance Improvement of Perovskite Solar Cell Design with Double Active Layer to Achieve an Efficiency of over 31%. Sustain. 15, (2023). https://doi.org/10.3390/su151813955

  17. A. Hosen, M.S. Mian, S.R. Ahmed, Al: Improving the Performance of Lead-Free FASnI3-Based Perovskite Solar Cell with Nb2O5 as an Electron Transport Layer. Adv. Theory Simulations. 6, 1–13 (2023). https://doi.org/10.1002/adts.202200652

    Article  Google Scholar 

  18. S.J. Lee, S.S. Shin, Y.C. Kim, D. Kim, T.K. Ahn, J.H. Noh, J. Seo, S. Seok, Il: Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF2-Pyrazine Complex. J. Am. Chem. Soc. 138, 3974–3977 (2016). https://doi.org/10.1021/jacs.6b00142

    Article  Google Scholar 

  19. W. Liao, D. Zhao, Y. Yu, C.R. Grice, C. Wang, A.J. Cimaroli, P. Schulz, W. Meng, K. Zhu, R.G. Xiong, Y. Yan, Lead-Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22%. Adv. Mater. 28, 9333–9340 (2016). https://doi.org/10.1002/adma.201602992

    Article  Google Scholar 

  20. Singh, N.K., Agarwal, A.: Performance assessment of sustainable highly efficient CsSn0.5Ge0.5I3/FASnI3 based Perovskite Solar Cell: A numerical modelling approach. Opt. Mater. (Amst). 139, (2023). https://doi.org/10.1016/j.optmat.2023.113822

  21. R. Wang, J. Wang, S. Tan, Y. Duan, Z.K. Wang, Y. Yang, Opportunities and Challenges of Lead-Free Perovskite Optoelectronic Devices. Trends Chem. 1, 368–379 (2019). https://doi.org/10.1016/j.trechm.2019.04.004

    Article  Google Scholar 

  22. R. Shukla, R.R. Kumar, D. Punetha, S.K. Pandey, Design Perspective, Fabrication, and Performance Analysis of Formamidinium Tin Halide Perovskite Solar Cell. IEEE J. Photovoltaics. 13, 404–410 (2023). https://doi.org/10.1109/JPHOTOV.2023.3241793

    Article  Google Scholar 

  23. El Arfaoui, Y., Khenfouch, M., Habiballah, N.: Efficient all lead-free perovskite solar cell simulation of FASnI3/FAGeCl3 with 30% efficiency: SCAPS-1D investigation. Results Opt. 13, (2023). https://doi.org/10.1016/j.rio.2023.100554

  24. Raghvendra, Kumar, R.R., Pandey, S.K.: Performance evaluation and material parameter perspective of eco-friendly highly efficient CsSnGeI3 perovskite solar cell. Superlattices Microstruct. 135, (2019). https://doi.org/10.1016/j.spmi.2019.106273

  25. T. Wu, X. Liu, X. Luo, H. Segawa, G. Tong, Y. Zhang, L.K. Ono, Y. Qi, L. Han, Heterogeneous FASnI3 Absorber with Enhanced Electric Field for High-Performance Lead-Free Perovskite Solar Cells. Nano-Micro Lett. 14, 1–14 (2022). https://doi.org/10.1007/s40820-022-00842-4

    Article  ADS  Google Scholar 

  26. Zhu, Z., Jiang, X., Yu, D., Yu, N., Ning, Z., Mi, Q.: Smooth and Compact FASnI3Films for Lead-Free Perovskite Solar Cells with over 14% Efficiency. ACS Energy Lett. 2079–2083 (2022). https://doi.org/10.1021/acsenergylett.2c00776

  27. H. Abedini-Ahangarkola, S. Soleimani-Amiri, S. Gholami Rudi, Modeling and numerical simulation of high efficiency perovskite solar cell with three active layers. Sol. Energy 236, 724–732 (2022). https://doi.org/10.1016/j.solener.2022.03.055

    Article  ADS  Google Scholar 

  28. R. Shukla, R.R. Kumar, S.K. Pandey, Theoretical Study of Charge Carrier Lifetime and Recombination on the Performance of Eco-Friendly Perovskite Solar Cell. IEEE Trans. Electron Devices 68, 3446–3452 (2021). https://doi.org/10.1109/TED.2021.3078063

    Article  ADS  Google Scholar 

  29. S. Wang, A. Wang, X. Deng, L. Xie, A. Xiao, C. Li, Y. Xiang, T. Li, L. Ding, F. Hao, Lewis acid/base approach for efficacious defect passivation in perovskite solar cells. J. Mater. Chem. A. 8, 12201–12225 (2020). https://doi.org/10.1039/d0ta03957h

    Article  Google Scholar 

  30. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). https://doi.org/10.1021/ja809598r

    Article  Google Scholar 

  31. F. Azri, A. Meftah, N. Sengouga, A. Meftah, (Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell. Sol. Energy. 181, 372–378 (2019). https://doi.org/10.1016/j.solener.2019.02.017

    Article  ADS  Google Scholar 

  32. A.F. Abdulrahman, S.M. Ahmed, N.M. Ahmed, M.A. Almessiere, Enhancement of ZnO Nanorods Properties Using Modified Chemical Bath Deposition Method: Effect of Precursor Concentration. Crystals 10, 386 (2020). https://doi.org/10.3390/cryst10050386

    Article  Google Scholar 

  33. Z. Cao, C. Li, X. Deng, S. Wang, Y. Yuan, Y. Chen, Z. Wang, Y. Liu, L. Ding, F. Hao, Metal oxide alternatives for efficient electron transport in perovskite solar cells: Beyond TiO2and SnO2. J. Mater. Chem. A. 8, 19768–19787 (2020). https://doi.org/10.1039/d0ta07282f

    Article  Google Scholar 

  34. Lee, J., Kim, J., Kim, C.S., Jo, S.: Compact SnO2 /Mesoporous TiO2 Bilayer Electron Transport Layer for Perovskite Solar Cells Fabricated at Low Process Temperature. Nanomaterials. 12, (2022). https://doi.org/10.3390/nano12040718

  35. Qiu, L., Liu, Z., Ono, L.K., Jiang, Y., Son, D.Y., Hawash, Z., He, S., Qi, Y.: Scalable Fabrication of Stable High Efficiency Perovskite Solar Cells and Modules Utilizing Room Temperature Sputtered SnO2 Electron Transport Layer. Adv. Funct. Mater. 29, (2019). https://doi.org/10.1002/adfm.201806779

  36. J. You, L. Meng, T. Bin. Song, T.F. Guo, W.H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco, Y. Yang, Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 11, 75–81 (2016). https://doi.org/10.1038/nnano.2015.230

    Article  ADS  Google Scholar 

  37. Zhao, Z., Gu, F., Li, Y., Sun, W., Ye, S., Rao, H., Liu, Z., Bian, Z., Huang, C.: Mixed-Organic-Cation Tin Iodide for Lead-Free Perovskite Solar Cells with an Efficiency of 8.12%. Adv. Sci. 4, (2017). https://doi.org/10.1002/advs.201700204

  38. Niemegeers, A., Burgelman, M.: Numerical modelling of ac-characteristics of CdTe and CIS solar cells. Conf. Rec. IEEE Photovolt. Spec. Conf. 901–904 (1996). https://doi.org/10.1109/pvsc.1996.564274

  39. G. Pindolia, S.M. Shinde, P.K. Jha, Optimization of an inorganic lead free RbGeI 3 based perovskite solar cell by SCAPS-1D simulation. Solar Energy 236, 802–821 (2022)

    Article  ADS  Google Scholar 

  40. F. Azri, A. Meftah, N. Sengouga, A. Meftah, Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell. Sol. Energy. 181, 372–378 (2019). https://doi.org/10.1016/j.solener.2019.02.017

    Article  ADS  Google Scholar 

  41. Bansal, S., Aryal, P.: Evaluation of new materials for electron and hole transport layers in perovskite-based solar cells through SCAPS-1D simulations. 2017 IEEE 44th Photovolt. Spec. Conf. PVSC 2017. 3220–3223 (2017). https://doi.org/10.1109/PVSC.2017.8366107

  42. Chakraborty, K., Choudhury, M.G., Paul, S.: Numerical study of Cs2TiX6 (X = Br−, I−, F− and Cl−) based perovskite solar cell using SCAPS-1D device simulation, (2019)

  43. N. Lakhdar, A. Hima, (Electron transport material effect on performance of perovskite solar cells based on CH3NH3GeI3. Opt. Mater. 99, 109517 (2020). https://doi.org/10.1016/j.optmat.2019.109517

    Article  Google Scholar 

  44. K. Chakraborty, M.G. Choudhury, S. Paul, Numerical study of Cs2TiX6 (X = Br−, I−, F− and Cl−) based perovskite solar cell using SCAPS-1D device simulation. Sol. Energy. 194, 886–892 (2019). https://doi.org/10.1016/j.solener.2019.11.005

    Article  ADS  Google Scholar 

  45. Y.H. Khattak, F. Baig, A. Shuja, S. Beg, B.M. Soucase, Numerical analysis guidelines for the design of efficient novel nip structures for perovskite solar cell. Sol. Energy. 207, 579–591 (2020). https://doi.org/10.1016/j.solener.2020.07.012

    Article  ADS  Google Scholar 

  46. T.M. Koh, T. Krishnamoorthy, N. Yantara, C. Shi, W.L. Leong, P.P. Boix, A.C. Grimsdale, S.G. Mhaisalkar, N. Mathews, Formamidinium tin-based perovskite with low Eg for photovoltaic applications. J. Mater. Chem. A. 3, 14996–15000 (2015). https://doi.org/10.1039/c5ta00190k

    Article  Google Scholar 

  47. S. Abdelaziz, A. Zekry, A. Shaker, M. Abouelatta, Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation. Opt. Mater. 101, 109738 (2020). https://doi.org/10.1016/j.optmat.2020.109738

    Article  Google Scholar 

  48. F. Jafarzadeh, H. Aghili, H. Nikbakht, S. Javadpour, Design and optimization of highly efficient perovskite/homojunction SnS tandem solar cells using SCAPS-1D. Sol. Energy 236, 195–205 (2022). https://doi.org/10.1016/j.solener.2022.01.046

    Article  ADS  Google Scholar 

  49. Y.H. Khattak, F. Baig, A. Shuja, S. Beg, B.M. Soucase, Numerical analysis guidelines for the design of efficient novel nip structures for perovskite solar cell. Sol. Energy. 207, 579–591 (2020). https://doi.org/10.1016/j.solener.2020.07.012

    Article  ADS  Google Scholar 

  50. N. Rai, S. Rai, P.K. Singh, P. Lohia, D.K. Dwivedi, Analysis of various ETL materials for an efficient perovskite solar cell by numerical simulation. J. Mater. Sci. Mater. Electron. 31, 16269–16280 (2020). https://doi.org/10.1007/s10854-020-04175-z

    Article  Google Scholar 

  51. Salem, M.S., Shaker, A., Othman, M.S., Al-Bagawia, A.H., Fedawy, M., Aleid, G.M.: Numerical analysis and design of high performance HTL-free antimony sulfide solar cells by SCAPS-1D. Opt. Mater. (Amst). 123, (2022). https://doi.org/10.1016/j.optmat.2021.111880

  52. A.T. Ngoupo, S. Ouédraogo, F. Zougmoré, J.M.B. Ndjaka, Numerical analysis of ultrathin Sb2Se3-based solar cells by SCAPS-1D numerical simulator device. Chinese J. Phys. 70, 1–13 (2021). https://doi.org/10.1016/j.cjph.2020.12.010

    Article  ADS  Google Scholar 

  53. Teyou Ngoupo, A., Ndjaka, J.-M.B.: Performance enhancement of Sb2Se3-based solar cell with hybrid buffer layer and MoSe2 as a hole transport material using simulator device. Discov. Mech. Eng. 1, (2022). https://doi.org/10.1007/s44245-022-00005-0

  54. Srivastava, V., Reddy, S.H., Anitha, B., Manoj, A.G.: A comparative study of defect density of states for single , mixed and bulk heterojunction perovskite solar cells A Comparative Study of Defect Density of States for Single , Mixed and Bulk Heterojunction Perovskite Solar Cells. 050013, (2019). https://doi.org/10.1063/1.5093873

  55. Lakhdar, N., Hima, A.: Electron transport material effect on performance of perovskite solar cells based on CH3NH3GeI3. Opt. Mater. (Amst). 99, (2020)(b). https://doi.org/10.1016/j.optmat.2019.109517

  56. W. Ke, C.C. Stoumpos, M. Zhu, L. Mao, I. Spanopoulos, J. Liu, O.Y. Kontsevoi, M. Chen, D. Sarma, Y. Zhang, M.R. Wasielewski, M.G. Kanatzidis, Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI3. Sci. Adv. 3, 1–10 (2017). https://doi.org/10.1126/sciadv.1701293

    Article  Google Scholar 

  57. Y. Liu, X. Li, J. Wang, L. Xu, B. Hu, An extremely high power factor in Seebeck effects based on a new n-type copper-based organic/inorganic hybrid C6H4NH2CuBr 2I film with metal-like conductivity. J. Mater. Chem. A. 5, 13834–13841 (2017). https://doi.org/10.1039/c7ta03015k

    Article  Google Scholar 

Download references

Acknowledgements

The Department of Science and Technology (DST), Government of India, is acknowledged by the authors for the financial support given under the DST SERB Project (File No. SRG/2021/002110) that allowed them to complete this study. In order to carry out research at NIT Patna for this project, Dr. Amitesh Kumar would like to thank DST SERB for sponsoring a Start-up Research Grant. The Ministry of Education and NIT Patna are to be thanked by Mr. Parshuram Singh for the research fellowship. The research facilities provided by NIT Patna are well appreciated by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitesh Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Sengar, B.S. & Kumar, A. FASnI3 and FAMASnGeI3 as absorbers with TCOs as ETLs for eco-friendly high-performance perovskite solar cells. J Opt (2024). https://doi.org/10.1007/s12596-024-01879-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01879-x

Keywords

Navigation