Skip to main content
Log in

Dynamical behavior of the higher-order cubic-quintic nonlinear Schrödinger equation with stability analysis

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In this paper, we explore the intricate dynamics of ultrashort light pulses using a sophisticated higher-order nonlinear Schrödinger equation (NLSE). This equation incorporates third-order dispersion (3OD), fourth-order dispersion (4OD), and cubic-quintic nonlinearity (CQNL) terms, providing a nuanced perspective on how light pulses propagate through optical media. The nonlinear Schrödinger equation (NLSE) is a fundamental equation describing light pulse dynamics in optical fibers and finds diverse applications including soliton trains in layered waveguides, dual-mode NLSE with Kerr-law nonlinearity, solitary waves in magnet chains, dark optical soliton theory, dual-wave multiplicative processes, and harmonic generation in left-handed nonlinear transmission lines. The objective of this research is to analyze the dynamics of ultrashort and to gain insights into their propagation in optical media and contribute to advancements in nonlinear optics. Employing analytical techniques such as the unified method and the Sardar subequation method, we uncover a diverse range of soliton solutions for this novel equation. These solutions encompass bright, dark, periodic, kinks, and singular solitons representing a significant milestone as these solutions have never been obtained for this equation before. Furthermore, we delve into the linear stability mechanism to assess the effects of different factors on soliton dynamics, such as group velocity dispersion and self-steepening coefficient terms. Through meticulous calculations and analysis, we gain valuable insights into the physical implications of our proposed model. To aid in visualizing these effects, we present 3D, 2D, and contour graphs, providing a comprehensive depiction of the behavior of light pulses in nonlinear optical systems. Mathematica software is used for all caculation. Overall, our study underscores the effectiveness of our methodologies in deriving analytical solutions for the NLSE, thereby advancing our understanding of pulse dynamics and contributing to the ongoing progress in nonlinear optics research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

This article does not involve data sharing as no datasets were generated or analyzed during the current study.

References

  1. C. Grosan, A. Abraham, A new approach for solving nonlinear equations systems. IEEE Trans. Syst. Man Cybernet. Part A 38(3), 698–714 (2008)

    Article  Google Scholar 

  2. L. Debnath, L. Debnath, “Nonlinear partial differential equations for scientists and engineers", Boston: Birkhäuser. (pp. 528-529) (2005)

  3. H. Sedaghat, Nonlinear difference equations: Theory with applications to social science models , Springer Science & Business Media,(Vol. 15). (2013)

  4. G. V. Dreiden, K. R. Khusnutdinova, A. M. Samsonov, I. V. Semenova, Splitting induced generation of soliton trains in layered waveguides, J. Appl. Phys., 107(3) (2010)

  5. I. Jaradat, M. Alquran, S. Momani, A. Biswas, “Dark and singular optical solutions with dual-mode nonlinear Schrödinger’s equation and Kerr-law nonlinearity". Optik 172, 822–825 (2018)

    Article  ADS  Google Scholar 

  6. M. Alquran, I. Jaradat, Multiplicative of dual-waves generated upon increasing the phase velocity parameter embedded in dual-mode Schrödinger with nonlinearity Kerr laws. Nonlinear Dyn. 96, 115–121 (2019)

    Article  Google Scholar 

  7. M. Sebawe Abdalla, H. Eleuch, Exact analytic solutions of the Schrödinger equations for some modified q-deformed potentials, J. Appl. Phys. 115(23) (2014)

  8. W.B. Rabie, H.M. Ahmed, A.R. Seadawy, A. Althobaiti, “The higher-order nonlinear Schrödinger’s dynamical equation with fourth-order dispersion and cubic-quintic nonlinearity via dispersive analytical soliton wave solutions". Opt. Quantum Electron. 53, 1–25 (2021)

    Article  Google Scholar 

  9. D. Semrau, E. Sillekens, R.I. Killey, P. Bayvel, Modelling the delayed nonlinear fiber response in coherent optical communications. J. Lightwave Technol. 39(7), 1937–1952 (2020)

    Article  ADS  Google Scholar 

  10. V.I. Karpman, Radiation of solitons described by a higher-order nonlinear Schrödinger equation. Physica Scripta 1999(T82), 44 (1999)

    Article  Google Scholar 

  11. L. Hua-Mei, X. You-Shen, L. Ji, New optical solitons in high-order dispersive cubic-quintic nonlinear Schrödinger equation. Commun. Theoretical Phys. 41(6), 829 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  12. C.Q. Dai, J.L. Chen, J.F. Zhang, Optical solitary wave solutions for the fourth-order dispersive cubic-quintic nonlinear Schrödinger equation. Int. J. Modern Phys. B 21(15), 2657–2668 (2007)

    Article  ADS  Google Scholar 

  13. A.M. Sultan, D. Lu, M. Arshad, H.U. Rehman, M.S. Saleem, Soliton solutions of higher order dispersive cubic-quintic nonlinear Schrödinger equation and its applications. Chin. J. Phys. 67, 405–413 (2020)

    Article  Google Scholar 

  14. E.M.E. Zayed, A.G. Al-Nowehy, Generalized kudryashov method and general exp a function method for solving a high order nonlinear schrödinger equation. J. Space Explor 6, 1–26 (2017)

    Google Scholar 

  15. E. V. Krishnan, M. A. Ghabshi, M. Alquran, “(G’/G)-expansion method and Weierstrass elliptic function method applied to coupled wave equation", arXiv preprint arXiv:1911.10586 (2019)

  16. Y. Li, X. Geng, B. Xue, R. Li, Darboux transformation and exact solutions for a four-component Fokas-Lenells equation. Results Phys. 31, 105027 (2021)

    Article  Google Scholar 

  17. H. Rezazadeh, A. Korkmaz, M. Eslami, S. M. Mirhosseini-Alizamini, A large family of optical solutions to Kundu-Eckhaus model by a new auxiliary equation method. Opt. Quantum Electron., 51, 1-12 (2019)

  18. I. Jaradat, M. Alquran, S. Qureshi, T.A. Sulaiman, A. Yusuf, Convex-rogue, half-kink, cusp-soliton and other bidirectional wave-solutions to the generalized Pochhammer-Chree equation. Physica Scripta 97(5), 055203 (2022)

    Article  ADS  Google Scholar 

  19. M. Ali, M. Alquran, O.B. Salman, A variety of new periodic solutions to the damped (2+ 1)-dimensional Schrodinger equation via the novel modified rational sine-cosine functions and the extended tanh-coth expansion methods. Results Phys. 37, 105462 (2022)

    Article  Google Scholar 

  20. S. Arshed, G. Akram, M. Sadaf, A. Khan, Solutions of (3+ 1)-dimensional extended quantum nonlinear Zakharov-Kuznetsov equation using the generalized Kudryashov method and the modified Khater method. Opt. Quantum Electron. 55(10), 922 (2023)

    Article  Google Scholar 

  21. F. Dusunceli, E. Celik, M. Askin, H. Bulut, New exact solutions for the doubly dispersive equation using the improved Bernoulli sub-equation function method. Indian J. Phys. 95, 309–314 (2021)

    Article  ADS  Google Scholar 

  22. K.J. Wang, G.D. Wang, F. Shi, Sub-picosecond pulses in single-mode optical fibres with the Kaup-Newell model via two innovative methods. Pramana 98(1), 1–11 (2024)

    Article  Google Scholar 

  23. K. J. Wang, F. Shi, P. Xu, Multiple soliton, soliton molecules and the other diverse wave solutions to the (2+ 1)-dimensional Kadomtsev-Petviashvili equation. Modern Phys. Lett. B, 2450259 (2024)

  24. K. J. Wang, F. Shi, Non-singular complexiton, singular complexiton and complex N-soliton solutions of the new extended (3+ 1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Phys. Scripta (2024)

  25. K.J. Wang, S. Li, F. Shi, P. Xu, Novel Soliton Molecules, Periodic Wave and other Diverse Wave Solutions to the New (2+ 1)-Dimensional Shallow Water Wave Equation. Int. J. Theoretical Phys. 63(2), 53 (2024)

    Article  MathSciNet  Google Scholar 

  26. N. Raza, M.H. Rafiq, M. Kaplan, S. Kumar, Y.M. Chu, The unified method for abundant soliton solutions of local time fractional nonlinear evolution equations. Results Phys. 22, 103979 (2021)

    Article  Google Scholar 

  27. S. Akcagil, T. Aydemir, “A new application of the unified method", New Trends in Mathematical Sciences, 6(1) (2018)

  28. X. Wang, S.A. Javed, A. Majeed, M. Kamran, M. Abbas, Investigation of exact solutions of nonlinear evolution equations using unified method. Mathematics 10(16), 2996 (2022)

    Article  Google Scholar 

  29. R. Abazari, S. Jamshidzadeh, A. Biswas, Solitary wave solutions of coupled Boussinesq equation. Complexity 21(S2), 151–155 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  30. S. Islam, M.N. Alam, M.F. Al-Asad, C. Tunç, An analytical Technique for Solving New Computational Solutions of the Modified Zakharov-Kuznetsov Equation Arising in Electrical Engineering. J. Appl. Comput. Mech. 7(2), 715–726 (2021)

    Google Scholar 

  31. K.J. Wang, J.H. Liu, On abundant wave structures of the unsteady korteweg-de vries equation arising in shallow water. J. Ocean Eng. Sci. 8(6), 595–601 (2023)

    Article  Google Scholar 

  32. R. Hussain, A. Imtiaz, T. Rasool, H. Rezazadeh, M. \({\dot{I}}\)nç, Novel exact and solitary solutions of conformable Klein-Gordon equation via Sardar-subequation method. J. Ocean Eng. Sci. (2022)

  33. H.U. Rehman, R. Akber, A.M. Wazwaz, H.M. Alshehri, M.S. Osman, Analysis of Brownian motion in stochastic Schrödinger wave equation using Sardar sub-equation method. Optik 289, 171305 (2023)

    Article  ADS  Google Scholar 

  34. T. Muhammad, A.A. Hamoud, H. Emadifar, F.K. Hamasalh, H. Azizi, M. Khademi, Traveling wave solutions to the Boussinesq equation via Sardar sub-equation technique. AIMS Mathematics 7, 11134–11149 (2022)

    Article  MathSciNet  Google Scholar 

  35. H.U. Rehman, I. Iqbal, S. Subhi Aiadi, N. Mlaiki, M.S. Saleem, Soliton solutions of Klein-Fock-Gordon equation using Sardar subequation method. Mathematics 10(18), 3377 (2022)

    Article  Google Scholar 

  36. M.I. Asjad, M. Inc, I. Iqbal, Exact solutions for new coupled Konno-Oono equation via Sardar subequation method. Opt. Quantum Electron. 54(12), 798 (2022)

    Article  Google Scholar 

  37. R. Hussain, A. Imtiaz, T. Rasool, H. Rezazadeh, M. \({\dot{I}}\)nç, Novel exact and solitary solutions of conformable Klein-Gordon equation via Sardar-subequation method, J. Ocean Eng. Sci. (2022)

  38. N. Ullah, M.I. Asjad, A. Hussanan, A. Akgül, W.R. Alharbi, H. Algarni, I.S. Yahia, Novel waves structures for two nonlinear partial differential equations arising in the nonlinear optics via Sardar-subequation method. Alexandria Eng. J. 71, 105–113 (2023)

    Article  Google Scholar 

  39. M. Cinar, A. Secer, M. Ozisik, M. Bayram, Derivation of optical solitons of dimensionless Fokas-Lenells equation with perturbation term using Sardar sub-equation method. Opt. Quantum Electron. 54(7), 402 (2022)

    Article  Google Scholar 

  40. H. Esen, N. Ozdemir, A. Secer, M. Bayram, On solitary wave solutions for the perturbed Chen–Lee–Liu equation via an analytical approach. Optik 245, 167641 (2021)

    Article  ADS  Google Scholar 

  41. D. Chou, H. Ur Rehman, A. Amer, A. Amer, New solitary wave solutions of generalized fractional Tzitzéica-type evolution equations using Sardar sub-equation method. Opt. Quantum Electron. 55(13), 1148 (2023)

    Article  Google Scholar 

  42. A.K. Alsharidi, A. Bekir, “Discovery of new exact wave solutions to the M-fractional complex three coupled Maccari’s system by Sardar sub-equation scheme". Symmetry 15(8), 1567 (2023)

    Article  ADS  Google Scholar 

  43. T. Rasool, R. Hussain, M.A. Al Sharif, W. Mahmoud, M.S. Osman, A variety of optical soliton solutions for the M-truncated Paraxial wave equation using Sardar-subequation technique. Opt. Quantum Electron. 55(5), 396 (2023)

    Article  Google Scholar 

  44. Y. Yıldırım, A. Biswas, P. Guggilla, S. Khan, H.M. Alshehri, M.R. Belic, Optical solitons in fibre Bragg gratings with third-and fourth-order dispersive reflectivities. Ukr. J. Phys. Opt. 22(4), 239–254 (2021)

    Article  Google Scholar 

  45. Y. Yildrim, A. Biswas, A. Dakova, P. Guggilla, S. Khan, H. M. Alshehri, M. R. Belic, Cubic–quartic optical solitons having quadratic–cubic nonlinearity by sine–Gordon equation approach. Ukrainian J. Phys. Opt. 22(4) (2021)

  46. E.M. Zayed, R.M. Shohib, M.E. Alngar, A. Biswas, Y. Yıldırım, A. Dakova, M.R. Belic, Optical solitons in the Sasa-Satsuma model with multiplicative noise via Itô calculus. Ukr. J. Phys. Opt. 23(1), 9–14 (2022)

    Article  Google Scholar 

  47. A.A. Al Qarni, A.M. Bodaqah, A.S.H.F. Mohammed, A.A. Alshaery, H.O. Bakodah, A. Biswas, Cubic-quartic optical solitons for Lakshmanan-Porsezian-Daniel equation by the improved Adomian decomposition scheme. Ukr. J. Phys. Opt. 23(4), 228–242 (2022)

    Article  Google Scholar 

  48. M. Aphane, S.P. Moshokoa, H.M. Alshehri, “Quiescent optical solitons with Kudryashov’s generalized quintuple-power and nonlocal nonlinearity having nonlinear chromatic dispersion: generalized temporal evolution" Ukr. J. Phys. Opt. 24(2), 105–113 (2023)

    Article  Google Scholar 

  49. A. Biswas, J. M. Vega-Guzman, Y. Yildirim, S. P. Moshokoa, M. Aphane, A. A. Alghamdi, Optical solitons for the concatenation model with power-law nonlinearity: undetermined coefficients Ukrainian. J. Phys. Opt. 24(3) (2023)

  50. R. Kumar, R. Kumar, A. Bansal, A. Biswas, Y. Yildirim, S. P. Moshokoa, A. Asiri, Optical solitons and group invariants for Chen-Lee-Liu equation with time-dependent chromatic dispersion and nonlinearity by Lie symmetr. Ukrainian J. Phys. Opt. 24(4) (2023)

  51. E. M. Zayed, M. E. Alngar, R. Shohib, A. Biswas, Y. Yıldırım, C. M. B. Dragomir, Highly dispersive gap solitons in optical fibers with dispersive reflectivity having parabolic-nonlocal nonlinearity (2024)

  52. E. M. Zayed, K. A. Gepreel, M. El-Horbaty, A. Biswas, Y. Yildirim, H. Triki, A. Asiri, Optical solitons for the dispersive concatenation model. Contemporary Mathematics, 592-611 (2023)

  53. O. González-Gaxiola, A. Biswas, M.R. Belic, Optical soliton perturbation of Fokas-Lenells equation by the Laplace-Adomian decomposition algorithm. J. Euro. Opt. Soc.-Rapid Publ. 15, 1–9 (2019)

    Article  Google Scholar 

  54. E. M. Zayed, M. El-Horbaty, M. E. Alngar, R. M. Shohib, A. Biswas, Y. Yıldırım, A. Asiri, Dynamical system of optical soliton parameters by variational principle (super-Gaussian and super-sech pulses). J. Euro. Opt. Soc.-Rapid Publ. 19(2), 38 (2023)

  55. K. S. Al-Ghafri, M. Sankar, E. V. Krishnan, A. Biswas, A. Asiri, Chirped gap solitons with Kudryashov’s law of self-phase modulation having dispersive reflectivity. J. Euro. Opt. Soc.-Rapid Publ. 19(2), 40 (2023)

  56. S. U. Rehman, J. Ahmad, “Investigation of exact soliton solutions to Chen-Lee-Liu equation in birefringent fibers and stability analysis", Journal of Ocean Engineering and Science (2022)

  57. S. Akram, J. Ahmad, S.U. Rehman, T. Younas, Stability analysis and dispersive optical solitons of fractional Schrödinger-Hirota equation. Opt. Quantum Electron. 55(8), 664 (2023)

    Article  Google Scholar 

  58. H. Esen, A. Secer, M. Ozisik, M. Bayram, Analytical soliton solutions of the higher order cubic-quintic nonlinear Schrödinger equation and the influence of the model’s parameters. J. Appl. Phys. 132(5) (2022)

Download references

Author information

Authors and Affiliations

Authors

Contributions

TY: conceptualization, methodology, software, writing—original draft. JA resources, acquisition, investigation, supervision, writing—review and editing, validation.

Corresponding author

Correspondence to Jamshad Ahmad.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest.

Authorization for publishing

All authors have provided their unanimous agreement and consent for the publication of this research paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

younas, T., Ahmad, J. Dynamical behavior of the higher-order cubic-quintic nonlinear Schrödinger equation with stability analysis. J Opt (2024). https://doi.org/10.1007/s12596-024-01864-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01864-4

Keywords

Navigation