Skip to main content
Log in

Transfer of quantum correlations through strong coupling in a three-mode optomechanical system

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the generation of steady-state correlations through a three-mode optomechanical system. In particular, the hybrid system consists of two movable mirrors simultaneously coupled to a single cavity mode. We quantified the dynamics of the quantumness by logarithmic negativity, two non-Hermitian operators, and Gaussian quantum discord. Our results show that the transfer of correlations strongly depends on the physical parameters of the system. In particular, using the parameter regime the results show that a significant amount of quantum correlation is generated. Besides, the quantum discord between the optical and mechanical modes increases with drive laser power and decreases with mean thermal phonon number growths due to thermal noise causing decoherence. We further show that the transfer of quantum discord between the optical and mechanical modes can be controlled by adjusting the coupling strength. As a result, the effects of the other parameters are also discussed in detail. We believe that our results provide a good resource for the realization of quantum information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availibility statement

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

  1. S. Pirandola et al., Advances in quantum cryptography. Adv. Opt. Photonics 12(4), 1012–1236 (2020)

    Article  ADS  Google Scholar 

  2. H.-W. Liu, F. Wang, H.-R. Li, Y. Deng, M.-X. Luo, Optimal bipartite entanglement transfer and photonic implementations. Opt. Commun. 334, 273–279 (2015)

    Article  ADS  Google Scholar 

  3. V. Scarani et al., The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301 (2009)

    Article  ADS  Google Scholar 

  4. B. Teklu, Continuous-variable entanglement dynamics in Lorentzian environment. Phys. Lett. A 432, 128022 (2022)

    Article  MathSciNet  Google Scholar 

  5. T.G. Tesfahannes, M.D. Getahune, Steady-state quantum correlation measurement in hybrid optomechanical systems. Int. J. Quant. Inf. 18(07), 2050046 (2020)

    Article  MathSciNet  Google Scholar 

  6. T. Gebremariam, M. Mazaheri, Y. Zeng, C. Li, Dynamical quantum steering in a pulsed hybrid opto-electro-mechanical system. JOSA B 36(2), 168–177 (2019)

    Article  ADS  Google Scholar 

  7. M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Cavity optomechanics. Rev. Mod. Phys. 86(4), 1391 (2014)

    Article  ADS  Google Scholar 

  8. J. Hmouch, M. Amazioug, M. Nassik, Emergence of bipartite and tripartite entanglement in a double cavity optomechanical system. Appl. Phys. B 129(10), 151 (2023)

    Article  ADS  Google Scholar 

  9. M. Amazioug, M. Nassik, N. Habiballah, Entanglement, EPR steering and Gaussian geometric discord in a double cavity optomechanical systems. Eur. Phys. J. D 72, 1–9 (2018)

    Article  Google Scholar 

  10. B. Teklu, Matching a measurement to a quantum state. Physics 16, 172 (2023)

    Article  Google Scholar 

  11. A. Jöckel et al., Sympathetic cooling of a membrane oscillator in a hybrid mechanical-atomic system. Nat. Nanotechnol. 10(1), 55–59 (2015)

    Article  ADS  Google Scholar 

  12. H. Tan, X. Zhang, G. Li, Steady-state one-way Einstein-Podolsky-Rosen steering in optomechanical interfaces. Phys. Rev. A 91(3), 032121 (2015)

    Article  ADS  Google Scholar 

  13. Y. Liu, H. Miao, V. Aksyuk, K. Srinivasan, Wide cantilever stiffness range cavity optomechanical sensors for atomic force microscopy. Opt. Express 20(16), 18268–18280 (2012)

    Article  ADS  Google Scholar 

  14. T. Gebremariam, Y.-X. Zeng, M. Mazaheri, C. Li, Enhancing optomechanical force sensing via precooling and quantum noise cancellation. Sci. China Phys. Mech. Astron. 63, 1–11 (2020)

    Article  Google Scholar 

  15. C.B. Møller et al., Quantum back-action-evading measurement of motion in a negative mass reference frame. Nature 547(7662), 191–195 (2017)

    Article  ADS  Google Scholar 

  16. T. Fogarty et al., Entangling two defects via a surrounding crystal. Phys. Rev. A 87(5), 050304 (2013)

    Article  ADS  Google Scholar 

  17. A. Carr, M. Saffman, Preparation of entangled and antiferromagnetic states by dissipative Rydberg pumping. Phys. Rev. Lett. 111(3), 033607 (2013)

    Article  ADS  Google Scholar 

  18. T.P. Purdy, P.-L. Yu, R.W. Peterson, N.S. Kampel, C.A. Regal, Strong optomechanical squeezing of light. Phys. Rev. X 3(3), 031012 (2013)

    Google Scholar 

  19. J.T. Barreiro et al., An open-system quantum simulator with trapped ions. Nature 470(7335), 486–491 (2011)

    Article  ADS  Google Scholar 

  20. W. Ge, M. Al-Amri, H. Nha, M.S. Zubairy, Entanglement of movable mirrors in a correlated-emission laser. Phys. Rev. A 88(2), 022338 (2013)

    Article  ADS  Google Scholar 

  21. C.-J. Yang, J.-H. An, W. Yang, Y. Li, Generation of stable entanglement between two cavity mirrors by squeezed-reservoir engineering. Phys. Rev. A 92(6), 062311 (2015)

    Article  ADS  Google Scholar 

  22. X.-W. Xu, Y.-J. Zhao, Y.-X. Liu, Entangled-state engineering of vibrational modes in a multimembrane optomechanical system. Phys. Rev. A 88(2), 022325 (2013)

    Article  ADS  Google Scholar 

  23. T.G. Tesfahannes, Generation of the bipartite entanglement and correlations in an optomechanical array. JOSA B 37(11), A245–A252 (2020)

    Article  Google Scholar 

  24. C. Joshi, J. Larson, M. Jonson, E. Andersson, P. Öhberg, Entanglement of distant optomechanical systems. Phys. Rev. A 85(3), 033805 (2012)

    Article  ADS  Google Scholar 

  25. D. Vitali et al., Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98(3), 030405 (2007)

    Article  ADS  Google Scholar 

  26. J. Bochmann, A. Vainsencher, D.D. Awschalom, A.N. Cleland, Nanomechanical coupling between microwave and optical photons. Nat. Phys. 9(11), 712–716 (2013)

    Article  Google Scholar 

  27. B. Tang, B.-P. Hou, X.-H. Zhao, Y.-B. Qian, D.-G. Lai, Optical nonreciprocity in a three-mode optomechanical system within a common reservoir. JOSA B 37(5), 1550–1562 (2020)

    Article  ADS  Google Scholar 

  28. J.-Q. Liao, Q.-Q. Wu, F. Nori et al., Entangling two macroscopic mechanical mirrors in a two-cavity optomechanical system. Phys. Rev. A 89(1), 014302 (2014)

    Article  ADS  Google Scholar 

  29. R.-X. Chen, L.-T. Shen, Z.-B. Yang, H.-Z. Wu, S.-B. Zheng, Enhancement of entanglement in distant mechanical vibrations via modulation in a coupled optomechanical system. Phys. Rev. A 89(2), 023843 (2014)

    Article  ADS  Google Scholar 

  30. A.A. Kibret, T.Y. Derge, T.G. Tesfahannes, Steady-state entanglement in a hybrid optomechanical system enhanced by optical parametric amplifiers. Opt. Contin. 2(10), 2131–2143 (2023)

    Article  Google Scholar 

  31. H.D. Mekonnen, T.G. Tesfahannes, T.Y. Darge, A.G. Kumela, Quantum correlation in a nano-electro-optomechanical system enhanced by an optical parametric amplifier and coulomb-type interaction. Sci. Rep. 13(1), 13800 (2023)

    Article  ADS  Google Scholar 

  32. E.A. Sete, H. Eleuch, C.R. Ooi, Light-to-matter entanglement transfer in optomechanics. JOSA B 31(11), 2821–2828 (2014)

    Article  ADS  Google Scholar 

  33. S. Suciu, A. Isar, Gaussian Geometric Discord In Terms of Hellinger Distance, vol. 1694 (AIP Publishing, Melville, 2015)

    Google Scholar 

  34. T. Gebremariam, Y.-X. Zeng, X.-Y. Chen, C. Li, Observation and measures of robust correlations for continuous variable system. Commun. Theor. Phys. 68(5), 661 (2017)

    Article  ADS  Google Scholar 

  35. M. Amazioug, M. Nassik, N. Habiballah, Entanglement and gaussian interferometric power dynamics in an optomechanical system with radiation pressure. Chin. J. Phys. 58, 1–7 (2019)

    Article  Google Scholar 

  36. G.S. Agarwal, S. Huang, Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A 81(4), 041803 (2010)

    Article  ADS  Google Scholar 

  37. M. Amazioug, M. Daoud, Measure and control of quantum correlations in optomechanics. Eur. Phys. J. D 75(6), 178 (2021)

    Article  ADS  Google Scholar 

  38. M.A. Nielsen, I.L. Chuang, Quantum computation and quantum information. Phys. Today 54(2), 60 (2001)

    Google Scholar 

  39. Z.H. Yang, C. Li, Y. Shi, X.Y. Chen, Measurement of quantum correlation on two-mode continuous state. Int. J. Theor. Phys. 55, 1036–1042 (2016)

    Article  MathSciNet  Google Scholar 

  40. H. Ollivier, W.H. Zurek, Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88(1), 017901 (2001)

    Article  ADS  Google Scholar 

  41. A.A. Rehaily, S. Bougouffa, Entanglement generation between two mechanical resonators in two optomechanical cavities. Int. J. Theor. Phys. 56(5), 1399–1409 (2017)

    Article  MathSciNet  Google Scholar 

  42. A. Lakhfif, J. El Qars, M. Nassik, Controlling photon-phonon entanglement in a three-mode optomechanical system. Eur. Phys. J. D 75(6), 189 (2021)

    Article  ADS  Google Scholar 

  43. C. Gardiner, P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods With Applications To Quantum Optics (Springer, Berlin, 2004)

    Google Scholar 

  44. D. Basilewitsch, C.P. Koch, D.M. Reich, Quantum optimal control for mixed state squeezing in cavity optomechanics. Adv. Quantum Technol. 2(3–4), 1800110 (2019)

    Article  Google Scholar 

  45. G. Milburn, M. Woolley, An introduction to quantum optomechanics. Acta Phys. Slov. 61(5), 483–601 (2011)

    ADS  Google Scholar 

  46. E.X. DeJesus, C. Kaufman, Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations. Phys. Rev. A 35(12), 5288 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  47. G. Li et al., Quantum coherence transfer between an optical cavity and mechanical resonators. Sci. China Phys. Mech. Astron. 62, 1–12 (2019)

    Article  Google Scholar 

  48. S.J. Hammarling, Numerical solution of the stable, non-negative definite Lyapunov equation. IMA J. Numer. Anal. 2(3), 303–323 (1982)

    Article  MathSciNet  Google Scholar 

  49. M.B. Plenio, Logarithmic negativity: a full entanglement monotone that is not convex. Phys. Rev. Lett. 95(9), 090503 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  50. W. Li, F. Zhang, C. Li, H. Song, Observation of non-Hermitian quantum correlation criterion in mesoscopic optomechanical system. Int. J. Theor. Phys. 55, 2097–2109 (2016)

    Article  Google Scholar 

  51. P. Giorda, M.G. Paris, Gaussian quantum discord. Phys. Rev. Lett. 105(2), 020503 (2010)

    Article  ADS  Google Scholar 

  52. S. Gröblacher, K. Hammerer, M.R. Vanner, M. Aspelmeyer, Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature 460(7256), 724–727 (2009)

    Article  ADS  Google Scholar 

Download references

Funding

We have not received any funds for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tesfay Gebremariam Tesfahannes.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tesfahannes, T.G., Abie, B.G., Mekonnen, H.D. et al. Transfer of quantum correlations through strong coupling in a three-mode optomechanical system. J Opt (2024). https://doi.org/10.1007/s12596-024-01779-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01779-0

Keywords

Navigation