Skip to main content
Log in

Quantum coherence transfer between an optical cavity and mechanical resonators

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

This study highlights the theoretical investigation of quantum coherence in mechanical oscillators and its transfer between the cavity and mechanical modes of an optomechanical system comprising an optical cavity and two mechanical oscillators that, in this study, were simultaneously coupled to the optical cavity at different optomechanical coupling strengths. The quantum coherence transfer between the optical and mechanical modes is found to depend strongly on the relative magnitude of the two optomechanical couplings. The laser power, decay rates of the cavity and mechanical oscillators, environmental temperature, and frequency of the mechanical oscillator are observed to significantly influence the investigated quantum coherences. Moreover, quantum coherence generation in the optomechanical system is restricted by the system’s stability condition, which helps sustain high and stable quantum coherence in the optomechanical system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, Phys. Rev. Lett. 98, 030405 (2007).

    ADS  Google Scholar 

  2. N. Matsumoto, K. Komori, Y. Michimura, G. Hayase, Y. Aso, and K. Tsubono, Phys. Rev. A 92, 033825 (2015), arXiv: 1312.5031.

    ADS  Google Scholar 

  3. J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, Nature 452, 72 (2008), arXiv: 0707.1724.

    ADS  Google Scholar 

  4. C. Wan, M. Scala, G. W. Morley, A. A. Rahman, H. Ulbricht, J. Bateman, P. F. Barker, S. Bose, and M. S. Kim, Phys. Rev. Lett. 117, 143003 (2016), arXiv: 1511.02738.

    ADS  Google Scholar 

  5. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014), arXiv: 1303.0733.

    ADS  Google Scholar 

  6. K. Li, S. Davuluri, and Y. Li, Sci. China-Phys. Mech. Astron. 61, 090311 (2018).

    Google Scholar 

  7. H. Xiong, L. G. Si, X. Y. Lv, X. X. Yang, and Y. Wu, Sci. China-Phys. Mech. Astron. 58, 050302 (2015).

    Google Scholar 

  8. M. Gao, F. C. Lei, C. G. Du, and G. L. Long, Sci. China-Phys. Mech. Astron. 59, 610301 (2016), arXiv: 1506.05611.

    Google Scholar 

  9. C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, Phys. Rev. A 77, 033804 (2008), arXiv: 0705.1728.

    ADS  Google Scholar 

  10. W. Nie, A. Chen, and Y. Lan, Opt. Express 23, 30970 (2015).

    ADS  Google Scholar 

  11. R. W. Peterson, T. P. Purdy, N. S. Kampel, R. W. Andrews, P. L. Yu, K. W. Lehnert, and C. A. Regal, Phys. Rev. Lett. 116, 063601 (2016), arXiv: 1510.03911.

    ADS  Google Scholar 

  12. Y. C. Liu, Y. F. Xiao, X. S. Luan, and C. W. Wong, Sci. China-Phys. Mech. Astron. 58, 050305 (2015), arXiv: 1504.04497.

    Google Scholar 

  13. X. Y. Lü, J. Q. Liao, L. Tian, and F. Nori, Phys. Rev. A 91, 013834 (2015), arXiv: 1403.0049.

    ADS  Google Scholar 

  14. W. Xiong, D. Y. Jin, Y. Qiu, C. H. Lam, and J. Q. You, Phys. Rev. A 93, 023844 (2016), arXiv: 1511.04518.

    ADS  Google Scholar 

  15. W. Nie, A. Chen, and Y. Lan, Opt. Express 25, 32931 (2017).

    ADS  Google Scholar 

  16. Y. Guo, K. Li, W. Nie, and Y. Li, Phys. Rev. A 90, 053841 (2014), arXiv: 1407.5202.

    ADS  Google Scholar 

  17. M. Ludwig, K. Hammerer, and F. Marquardt, Phys. Rev. A 82, 012333 (2010), arXiv: 0912.4499.

    ADS  Google Scholar 

  18. J. Li, G. Li, S. Zippilli, D. Vitali, and T. Zhang, Phys. Rev. A 95, 043819 (2017), arXiv: 1610.07261.

    ADS  Google Scholar 

  19. G. D. de Moraes Neto, F. M. Andrade, V. Montenegro, and S. Bose, Phys. Rev. A 93, 062339 (2016), arXiv: 1511.08705.

    ADS  Google Scholar 

  20. D. Vitali, S. Mancini, and P. Tombesi, J. Phys. A-Math. Theor. 40, 8055 (2007).

    ADS  Google Scholar 

  21. M. Pinard, A. Dantan, D. Vitali, O. Arcizet, T. Briant, and A. Heidmann, Europhys. Lett. 72, 747 (2005).

    ADS  Google Scholar 

  22. T. Baumgratz, M. Cramer, and M. B. Plenio, Phys. Rev. Lett. 113, 140401 (2014), arXiv: 1311.0275.

    ADS  Google Scholar 

  23. A. Winter, and D. Yang, Phys. Rev. Lett. 116, 120404 (2016), arXiv: 1506.07975.

    ADS  Google Scholar 

  24. A. Streltsov, S. Rana, P. Boes, and J. Eisert, Phys. Rev. Lett. 119, 140402 (2017), arXiv: 1705.04189.

    ADS  Google Scholar 

  25. M. J. Zhao, T. Ma, and Y. Q. Ma, Sci. China-Phys. Mech. Astron. 61, 020311 (2018), arXiv: 1712.09769.

    ADS  Google Scholar 

  26. J. X. Hou, S. Y. Liu, X. H. Wang, and W. L. Yang, Phys. Rev. A 96, 042324 (2017), arXiv: 1704.04891.

    ADS  Google Scholar 

  27. K. Ried, J. P. W. MacLean, R. W. Spekkens, and K. J. Resch, Phys. Rev. A 95, 062102 (2017), arXiv: 1707.06131.

    ADS  Google Scholar 

  28. A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera, and G. Adesso, Phys. Rev. Lett. 115, 020403 (2015), arXiv: 1502.05876.

    ADS  MathSciNet  Google Scholar 

  29. R. Ghobadi, S. Kumar, B. Pepper, D. Bouwmeester, A. I. Lvovsky, and C. Simon, Phys. Rev. Lett. 112, 080503 (2014), arXiv: 1401.2356.

    ADS  Google Scholar 

  30. H. L. Huang, A. K. Goswami, W. S. Bao, and P. K. Panigrahi, Sci. China-Phys. Mech. Astron. 61, 060311 (2018), arXiv: 1706.09489.

    ADS  Google Scholar 

  31. J. Ma, B. Yadin, D. Girolami, V. Vedral, and M. Gu, Phys. Rev. Lett. 116, 160407 (2016), arXiv: 1510.06179.

    ADS  Google Scholar 

  32. A. P. Reed, K. H. Mayer, J. D. Teufel, L. D. Burkhart, W. Pfaff, M. Reagor, L. Sletten, X. Ma, R. J. Schoelkopf, E. Knill, and K. W. Lehnert, Nat. Phys. 13, 1163 (2017), arXiv: 1703.02548.

    Google Scholar 

  33. M. A. Nielsen, and I. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, New York, 2010), p. 377.

    Google Scholar 

  34. R. J. Glauber, Phys. Rev. 130, 2529 (1963).

    ADS  MathSciNet  Google Scholar 

  35. W. Vogel, and J. Sperling, Phys. Rev. A 89, 052302 (2014), arXiv: 1401.5222.

    ADS  Google Scholar 

  36. C. Y. Lu, and J. W. Pan, Nat. Photon. 8, 174 (2014), arXiv: 1409.7775.

    ADS  Google Scholar 

  37. S. Braun, M. Friesdorf, S. S. Hodgman, M. Schreiber, J. P. Ronzheimer, A. Riera, M. del Rey, I. Bloch, J. Eisert, and U. Schneider, Proc. Natl. Acad. Sci. USA, 201408861 (2015), arXiv: 1403.7199.

  38. J. J. Chen, J. Cui, Y. R. Zhang, and H. Fan, Phys. Rev. A 94, 022112 (2016), arXiv: 1509.03576.

    ADS  Google Scholar 

  39. O. Abah, and E. Lutz, Europhys. Lett. 106, 20001 (2014), arXiv: 1303.6558.

    ADS  Google Scholar 

  40. X. L. Huang, T. Wang, and X. X. Yi, Phys. Rev. E 86, 051105 (2012).

    ADS  Google Scholar 

  41. G. Manzano, F. Galve, R. Zambrini, and J. M. R. Parrondo, Phys. Rev. E 93, 052120 (2016), arXiv: 1512.07881.

    ADS  Google Scholar 

  42. P. A. Moreau, J. Sabines-Chesterking, R. Whittaker, S. K. Joshi, P. M. Birchall, A. McMillan, J. G. Rarity, and J. C. F. Matthews, Sci. Rep. 7, 6256 (2017), arXiv: 1611.07871.

    ADS  Google Scholar 

  43. H. Rabitz, Science 288, 824 (2000).

    ADS  Google Scholar 

  44. Z. X. Man, Y. J. Xia, and R. Lo Franco, Sci. Rep. 5, 13843 (2015), arXiv: 1508.01675.

    ADS  Google Scholar 

  45. Y. Bahri, R. Vosk, E. Altman, and A. Vishwanath, Nat. Commun. 6, 7341 (2015).

    Google Scholar 

  46. C. L. Degen, F. Reinhard, and P. Cappellaro, Rev. Mod. Phys. 89, 035002 (2017), arXiv: 1611.02427.

    ADS  Google Scholar 

  47. R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, Nature 530, 313 (2016), arXiv: 1512.05360.

    ADS  Google Scholar 

  48. R. Riedinger, A. Wallucks, I. Marinkovic´, C. Löschnauer, M. Aspelmeyer, S. Hong, and S. Gröblacher, Nature 556, 473 (2018), arXiv: 1710.11147.

    ADS  Google Scholar 

  49. C. F. Ockeloen-Korppi, E. Damska¨gg, J. M. Pirkkalainen, M. Asjad, A. A. Clerk, F. Massel, M. J. Woolley, and M. A. Sillanpää, Nature 556, 478 (2018).

    ADS  Google Scholar 

  50. X. L. Wang, Y. H. Luo, H. L. Huang, M. C. Chen, Z. E. Su, C. Liu, C. Chen, W. Li, Y. Q. Fang, X. Jiang, J. Zhang, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Phys. Rev. Lett. 120, 260502 (2018), arXiv: 1801.04043.

    ADS  Google Scholar 

  51. G. Luo, Z. Z. Zhang, G. W. Deng, H. O. Li, G. Cao, M. Xiao, G. C. Guo, L. Tian, and G. P. Guo, Nat. Commun. 9, 383 (2018), arXiv: 1801.08752.

    ADS  Google Scholar 

  52. A. V. Shcherbakova, K. G. Fedorov, K. V. Shulga, V. V. Ryazanov, V. V. Bolginov, V. A. Oboznov, S. V. Egorov, V. O. Shkolnikov, M. J. Wolf, D. Beckmann, and A. V. Ustinov, Supercond. Sci. Technol. 28, 025009 (2015), arXiv: 1405.0373.

    ADS  Google Scholar 

  53. W. Xiong, Y. Qiu, L. A. Wu, and J. Q. You, New J. Phys. 20, 043037 (2018), arXiv: 1709.06433.

    ADS  Google Scholar 

  54. F. Fröwis, B. Yadin, and N. Gisin, Phys. Rev. A 97, 042103 (2018), arXiv: 1801.03441.

    ADS  Google Scholar 

  55. Q. Zheng, J. Xu, Y. Yao, and Y. Li, Phys. Rev. A 94, 052314 (2016), arXiv: 1610.06260.

    ADS  Google Scholar 

  56. X. Li, W. Nie, A. Chen, and Y. Lan, Phys. Rev. A 96, 063819 (2017).

    ADS  Google Scholar 

  57. A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, Nature 464, 697 (2010).

    ADS  Google Scholar 

  58. Y. D. Wang, and A. A. Clerk, Phys. Rev. Lett. 108, 153603 (2012), arXiv: 1110.5074.

    ADS  Google Scholar 

  59. M. Bhattacharya, P. L. Giscard, and P. Meystre, Phys. Rev. A 77, 013827 (2008), arXiv: 0710.0687.

    ADS  Google Scholar 

  60. S. A. Kennedy, M. J. Szabo, H. Teslow, J. Z. Porterfield, and E. R. I. Abraham, Phys. Rev. A 66, 043801 (2002).

    ADS  Google Scholar 

  61. J. Xu, Phys. Rev. A 93, 032111 (2016), arXiv: 1510.02916.

    ADS  Google Scholar 

  62. L. F. Buchmann, and D. M. Stamper-Kurn, Ann. Der Phys. 527, 156 (2015).

    ADS  MathSciNet  Google Scholar 

  63. L. F. Buchmann, S. Schreppler, J. Kohler, N. Spethmann, and D. M. Stamper-Kurn, Phys. Rev. Lett. 117, 030801 (2016), arXiv: 1602.02141.

    ADS  Google Scholar 

  64. N. Spethmann, J. Kohler, S. Schreppler, L. Buchmann, and D. M. Stamper-Kurn, Nat. Phys. 12, 27 (2016), arXiv: 1505.05850.

    Google Scholar 

  65. M. Ludwig, and F. Marquardt, Phys. Rev. Lett. 111, 073603 (2013), arXiv: 1208.0327.

    ADS  Google Scholar 

  66. L. F. Buchmann, L. Zhang, A. Chiruvelli, and P. Meystre, Phys. Rev. Lett. 108, 210403 (2012), arXiv: 1202.6618.

    ADS  Google Scholar 

  67. H. Seok, L. F. Buchmann, E. M. Wright, and P. Meystre, Phys. Rev. A 88, 063850 (2013), arXiv: 1309.7134.

    ADS  Google Scholar 

  68. F. Bemani, A. Motazedifard, R. Roknizadeh, M. H. Naderi, and D. Vitali, Phys. Rev. A 96, 023805 (2017), arXiv: 1703.01783.

    ADS  Google Scholar 

  69. E. X. De Jesus, and C. Kaufman, Phys. Rev. A 35, 5288 (1987).

    ADS  MathSciNet  Google Scholar 

  70. R. Benguria, and M. Kac, Phys. Rev. Lett. 46, 1 (1981).

    ADS  MathSciNet  Google Scholar 

  71. C. Genes, A. Mari, P. Tombesi, and D. Vitali, Phys. Rev. A 78, 032316 (2008), arXiv: 0806.2045.

    ADS  Google Scholar 

  72. C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, Rev. Mod. Phys. 84, 621 (2012), arXiv: 1110.3234.

    ADS  Google Scholar 

  73. S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, Nature 460, 724 (2009), arXiv: 0903.5293.

    ADS  Google Scholar 

  74. P. F. Cohadon, A. Heidmann, and M. Pinard, Phys. Rev. Lett. 83, 3174 (1999).

    ADS  Google Scholar 

  75. U. Leonhardt, Measuring the Quantum State of Light (Cambridge Univ. Press, New York, 2005), p. 86.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WenJie Nie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Nie, W., Li, X. et al. Quantum coherence transfer between an optical cavity and mechanical resonators. Sci. China Phys. Mech. Astron. 62, 100311 (2019). https://doi.org/10.1007/s11433-018-9413-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-018-9413-4

Key words

Navigation