Skip to main content
Log in

Responsivity and photo-transient response of Tb/Al/p-Si heterostructure solar detectors

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

This work aims to investigate the design, fabrication, and characterization of a novel photodetector for light-sensing applications. The photodetector is based on Tb/Al/Cr/p-Si heterostructure and was integrated using the E-beam evaporation fabrication technique. The performance of the photodetector was evaluated through various experiments, including I–V characteristics, responsivity, and photo-transient time analysis. The I–V characteristics were measured under dark and different irradiance levels. The experimental results showed that the structure has a good and fast response to the light confirming its photodiode behavior where the photocurrent increases with increasing illumination intensity due to the formation of electron–hole pairs. The electrical parameters were explained according to the thermionic emission (TE) theory. Moreover, Cheung and Nord’s methods were used to determine the diode electronic parameters such as ideality factor (n), barrier height (Φ0), and series resistance (Rs). The photo-transient characteristics of the heterostructure diode carried out under irradiance of about 1000 W/m2 have shown a fast response to light. The uncertainty budget for the I–V curves was estimated and tabulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Sekertekin, K. Ozel, A. Atilgan, A. Yildiz, Ultraviolet photodiode fabricated from TiO2 nanorods/p-silicon heterojunction. Mater. Lett. 323, 132565 (2022)

    Article  Google Scholar 

  2. A.B. Ulusan, A. Tataroglu, Ş Altındal, Y. Azizian-Kalandaragh, Photoresponse characteristics of Au/(CoFe2O4-PVP)/n-Si/Au (MPS) diode. J. Mater. Sci. Mater. Electron. 32(12), 15732–15739 (2021)

    Article  Google Scholar 

  3. A. Ashery, A.E.H. Gaballah, G.M. Turky, Current transport, photosensitive, and dielectric properties of PVA/n-Si heterojunction photodiode. SILICON (2021). https://doi.org/10.1007/s12633-021-01260-8

    Article  Google Scholar 

  4. A. Ashery, G. Said, W.A. Arafa, A.E.H. Gaballah, A.A.M. Farag, Structural and optical characteristics of PEDOT/n-Si heterojunction diode. Synth. Met. 214, 92–99 (2016)

    Article  Google Scholar 

  5. M. Uslenghi, D. Faccini, M. Fiorini, S. Incorvaia, G. Toso, L. Schettini, M. Carminati, E. Fabbrica, C. Fiorini, M.G. Pelizzo, A.J. Corso, Development of a novel photon counting detector for UV spectrographs. Proc. SPIE 12191, 121912O (2022)

    Google Scholar 

  6. A. Karabulut, A. Dere, O. Dayan, A.G. Al-Sehemi, Z. Serbetci, A.A. Al-Ghamdi, F. Yakuphanoglu, Silicon based photodetector with Ru(II) complexes organic interlayer. Mater. Sci. Semicond. Process. 91, 422–430 (2018)

    Article  Google Scholar 

  7. H.J. Syu, S.C. Shiu, C.F. Lin, Silicon nanowire/organic hybrid solar cell with efficiency of 8.40%. Sol. Energy Mater. Sol. Cells 98, 267–272 (2012)

    Article  Google Scholar 

  8. A. Buyukbas-Ulusan, A. Tataroglu, Electrical characterization of silicon nitride interlayer-based MIS diode. J. Mater. Sci. Mater. Electron. 31(12), 9888–9893 (2020)

    Article  Google Scholar 

  9. N. Jain, M.K. Hudait, III–V Multijunction solar cell integration with silicon: present status, challenges and future outlook. Energy Harvest. Syst. (2014). https://doi.org/10.1515/ehs-2014-0012

    Article  Google Scholar 

  10. J. Justice, C. Bower, M. Meitl, M.B. Mooney, M.A. Gubbins, B. Corbett, Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers. Nat. Photon. 6(9), 610–614 (2012)

    Article  ADS  Google Scholar 

  11. M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, M. Heyns, Site selective integration of III–V materials on Si for nanoscale logic and photonic devices. Cryst. Growth. 12(10), 4696–4702 (2012)

    Article  Google Scholar 

  12. Z. Li, K. Xu, F. Wei, Recent progress in photodetectors based on low-dimensional nanomaterials. Nanotechnol. Rev. 7(5), 393–411 (2018)

    Article  Google Scholar 

  13. W. Tian, H. Sun, L. Chen, P. Wangyang, X. Chen, J. Xiong, L. Li, Low-dimensional nanomaterial/Si heterostructure-based photodetectors. InfoMat 1(2), 140–163 (2019)

    Article  Google Scholar 

  14. M.-S. Choi, T. Park, W.-J. Kim, J. Hur, High-Performance ultraviolet photodetector based on a zinc oxide nanoparticle and single-walled carbon nanotube heterojunction hybrid film. Nanomaterials (2020). https://doi.org/10.3390/nano10020395

    Article  Google Scholar 

  15. Z. Yang, Z. Fang, J. Sheng, Z. Ling, Z. Liu, J. Zhu, P. Gao, J. Ye, Optoelectronic evaluation and loss analysis of PEDOT:PSS/Si hybrid heterojunction solar cells. Nanoscale Res. Lett. 12(1), 26 (2017)

    Article  ADS  Google Scholar 

  16. A. Ashery, S. Gad, H. Shaban, A.E.H. Gaballah, Heterostructure device based on graphene Oxide/TiO2/n-Si for optoelectronic applications. ECS J. Solid State Sci. Technol. (2021). https://doi.org/10.1149/2162-8777/abe1d9

    Article  Google Scholar 

  17. N.M.A. Hadia, S. Eid, M. Shaban, S.H. Mohamed, A.M. Elsayed, A.M. Ahmed, M. Alzaid, A.A.A. Abdelazeez, W. El Malti, M. Rabia, Poly-3-Methyl Aniline-assisted spherical PbS quantum dots through the ionic adsorption deposition method as a novel and highly efficient photodetector in UV, Vis, and NIR regions. Adsorpt. Sci. Technol. 2022, 1–12 (2022)

    Google Scholar 

  18. P. Phukan, P.P. Sahu, High performance UV photodetector based on metal-semiconductor-metal structure using TiO2-rGO composite. Opt. Mater. (Amst). 109, 110330 (2020)

    Article  Google Scholar 

  19. A. Fuad, D. Rusdiana, H. Saragih, T. Saragi, and M. Barmawi, Spectral Response of Al/Si Photodiode as IR Sensor, arXiv Prepr. cond-mat/0107213 (2001).

  20. A. Dubey, R. Mishra, Y. Hsieh, C. Cheng, B. Wu, L. Chen, S. Gwo, T. Yen, Aluminum plasmonics enriched ultraviolet GaN photodetector with ultrahigh responsivity, detectivity, and broad bandwidth. Adv. Sci. 7(24), 2002274 (2020)

    Article  Google Scholar 

  21. K. Chongsri, W. Pecharapa, UV Photodetector based on Al-doped ZnO nanocrystalline sol-gel derived thin fims. Energy Procedia 56, 554–559 (2014)

    Article  Google Scholar 

  22. Y. Zhao, W.R. Donaldson, Ultrafast UV AlGaN metal–semiconductor–metal photodetector with a response time below 25 ps. IEEE J. Quantum Electron. 56(3), 1–7 (2020)

    Article  Google Scholar 

  23. A.E.H. Gaballah, P. Nicolosi, N. Ahmed, K. Jimenez, G. Pettinari, A. Gerardino, P. Zuppella, Vacuum ultraviolet quarter wave plates based on SnTe/Al bilayer: Design, fabrication, optical and ellipsometric characterization. Appl. Surf. Sci. 463, 75–81 (2018)

    Article  ADS  Google Scholar 

  24. J. Hennessy, K. Balasubramanian, C.S. Moore, A.D. Jewell, S. Nikzad, K. France, M. Quijada, J. Astron, Performance and prospects of far ultraviolet aluminum mirrors protected by atomic layer deposition. J. Astron. Telesc. Instrum. Syst. 2(4), 041206 (2016)

    Article  ADS  Google Scholar 

  25. R. Malmhäll, Extraordinary Hall resistivity in amorphous terbium–iron thin films and its temperature dependence. J. Appl. Phys. 54(9), 5128–5131 (1983)

    Article  ADS  Google Scholar 

  26. A.S. Kalyakina, V.V. Utochnikova, E.Y. Sokolova, A.A. Vashchenko, L.S. Lepnev, R. Van Deun, A.L. Trigub, Y.V. Zubavichus, M. Hoffmann, S. Mühl, N.P. Kuzmina, OLED thin film fabrication from poorly soluble terbium o-phenoxybenzoate through soluble mixed-ligand complexes. Org. Electron. 28, 319–329 (2016)

    Article  Google Scholar 

  27. I.L.P. Raj, S. Valanarasu, S. Vinoth, N. Chidhambaram, R.S.R. Isaac, M. Ubaidullah, S.F. Shaikh, B. Pandit, Highly sensitive ultraviolet photodetectors fabricated from rare earth metal ions doped NiO thin films via nebulizer spray pyrolysis method. Sens. Actuators A Phys. 333, 113242 (2022)

    Article  Google Scholar 

  28. M.D. Devi, A.V. Juliet, K. Hariprasad, V. Ganesh, H.E. Ali, H. Algarni, I.S. Yahia, Improved UV Photodetection of Terbium-doped NiO thin films prepared by cost-effective nebulizer spray technique. Mater. Sci. Semicond. Process. 127, 105673 (2021)

    Article  Google Scholar 

  29. L. Zhang, C.L. Heng, C.N. Zhao, W.Y. Su, Y.K. Gao, P.G. Yin, T.G. Finstad, On the structure and ultraviolet emission of terbium doped zinc oxide thin films on silicon after high temperature treatment. Res. Phys. 32, 105121 (2022)

    Google Scholar 

  30. A.V. Paduraru, O. Oprea, A.M. Musuc, B.S. Vasile, F. Iordache, E. Andronescu, Influence of Terbium ions and their concentration on the photoluminescence properties of hydroxyapatite for biomedical applications. Nanomaterials (2021). https://doi.org/10.3390/nano11092442

    Article  Google Scholar 

  31. M.I. Kozlov, A.N. Aslandukov, A.A. Vashchenko, A.V. Medved’ko, A.E. Aleksandrov, E.V. Latipov, A.S. Goloveshkin, D.A. Lypenko, A.R. Tameev, V.V. Utochnikova, Toward efficient terbium-based solution-processed OLEDs: Hole mobility increase by the ligand design. J. Alloys Compd. 887, 161319 (2021)

    Article  Google Scholar 

  32. S. Carmona-Téllez, C. Falcony, M. Aguilar-Frutis, G. Alarcón-Flores, M. García-Hipólito, R. Martínez-Martínez, Photoluminescence, conductivity and structural study of terbium doped ZnO films grown on different substrates. Mater. Sci. Semicond. Process. 94, 51–56 (2019)

    Article  Google Scholar 

  33. Z. Wang, H. Liu, S. Wang, Z. Rao, Y. Yang, A luminescent Terbium-Succinate MOF thin film fabricated by electrodeposition for sensing of Cu2+ in aqueous environment. Sens. Actuators B Chem. 220, 779–787 (2015)

    Article  Google Scholar 

  34. E. Pereyra-Perea, M.R. Estrada-Yañez, M. García, Preliminary studies on luminescent terbium-doped thin films prepared by the sol - gel process. J. Phys. D Appl. Phys. 31(3), L7 (1998)

    Article  ADS  Google Scholar 

  35. S.V. Belaya, V.V. Bakovets, A.I. Boronin, S.V. Koshcheev, M.N. Lobzareva, I.V. Korolkov, P.A. Stabnikov, Terbium oxide films grown by chemical vapor deposition from terbium(III) dipivaloylmethanate. Inorg. Mater. 50(4), 379–386 (2014)

    Article  Google Scholar 

  36. A. E. H. Gaballah, P. Zuppella, N. Ahmed, K. Jimenez, G. Pettinari, A. Gerardino, and P. Nicolosi, “A table top polarimetric facility for the EUV spectral range: implementations and characterization,” in Proc. SPIE 10235, p. 102350X, Proc. SPIE (2017).

  37. S. Carmona-Téllez, C. Falcony, M. Aguilar-Frutis, G. Alarcón-Flores, M. García-Hipólito, R. Martínez-Martínez, White light emitting transparent double layer stack of Al2O3:Eu3+, Tb3+, and Ce3+ films deposited by spray pyrolysis. ECS J. Solid State Sci. Technol. (2013). https://doi.org/10.1149/2.017306jss

    Article  Google Scholar 

  38. A.M. Karmalawi, A.A. Abdelmageed, Development of a detector-based absolute spectral power responsivity scale in the spectral range of 300–1600 nm. J. Mater. Sci. Mater. Electron. 32(4), 5215–5221 (2021)

    Article  Google Scholar 

  39. S. Demirezen, A.G. Al-Sehemi, A. Yüzer, M. Ince, A. Dere, A.A. Al-Ghamdi, F. Yakuphanoglu, Electrical characteristics and photosensing properties of Al/symmetrical CuPc/p-Si photodiodes. J. Mater. Sci. Mater. Electron. 33(26), 21011–21021 (2022)

    Article  Google Scholar 

  40. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (John Wiley & Sons Inc, Hoboken, NJ, USA, 2006)

    Book  Google Scholar 

  41. E. H. Rhoderick and R. H. Williams, Metal-semiconductor contacts, Clarendon Press ; Oxford University Press, Oxford [England]; New York (1988).

  42. A. Tataroglu, R. Ocaya, A. Dere, O. Dayan, Z. Serbetci, A.G. Al-Sehemi, M. Soylu, A.A. Al-Ghamdi, F. Yakuphanoglu, Ruthenium(II) complex based photodiode for organic electronic applications. J. Electron. Mater. 47(1), 828–833 (2018)

    Article  ADS  Google Scholar 

  43. S.K. Cheung, N.W. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 49(2), 85–87 (1986)

    Article  ADS  Google Scholar 

  44. H. Norde, A modified forward I-V plot for Schottky diodes with high series resistance. J. Appl. Phys. 50(7), 5052–5053 (1979)

    Article  ADS  Google Scholar 

  45. A.M. Karmalawi, D.A. Rayan, M.M. Rashad, Establishment and evaluation of photovoltaic quantum e ffi ciency system at central metallurgical research and development institute. Opt. Int. J. Light Electron Opt. 217, 164931 (2020)

    Article  Google Scholar 

  46. A.M. Karmalawi, Characterization, traceability, and uncertainty estimation of reference solar panel module measurements using pulsed solar simulators and reference solar cells. Acta IMEKO 12(3), 1–9 (2023)

    Article  Google Scholar 

  47. J. H. Williams, Guide to the Expression of Uncertainty in Measurement(the GUM), in Quantifying Measurement The tyranny of numbers, IOP Publishing 6–9 (2016).

  48. A. Verma, P. Chaudhary, R.K. Tripathi, B.C. Yadav, Transient photodetection studies on 2D ZnO nanostructures prepared by simple organic-solvent assisted route. Sens. Actuators A Phys. 321, 112600 (2021)

    Article  Google Scholar 

  49. B. Stannowski, H. Stiebig, D. Knipp, H. Wagner, Transient photocurrent response of three-color detectors based on amorphous silicon. J. Appl. Phys. 85(7), 3904–3911 (1999)

    Article  ADS  Google Scholar 

  50. J.-Y. Kim, S.-A. Oh, K.M. Yu, B.S. Bae, E.-J. Yun, Transient photocurrent responses in amorphous Zn-Sn-O thin films. J. Korean Phys. Soc. 66(7), 1039–1044 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to extend our sincere appreciation to The Science, Technology & Innovation Funding Authority (STDF) in cooperation with the Egyptian Knowledge Bank (EKB) for their funding for open access.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. H. Gaballah.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaballah, A.E.H., Karmalawi, A. Responsivity and photo-transient response of Tb/Al/p-Si heterostructure solar detectors. J Opt (2023). https://doi.org/10.1007/s12596-023-01511-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-023-01511-4

Keywords

Navigation