Skip to main content
Log in

Quantum optical tristate Toffoli gate using frequency encoding principle of light with semiconductor optical amplifier

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

All-optical quantum logic gates with qubit data are the essential components in optical signal processing and computing. Quantum optical Toffoli gate is one of the most useful logic gates in the logic family which is extensively used to perform ultrafast optical digital operations. Here, in this paper, an all-optical scheme for realization of frequency encoded tristate Toffoli gate is proposed. Semiconductor optical amplifier based optical switches like frequency converters and add/drop multiplexers are used to implement the system. Also, a proper truth table and gate matrix of tristate Toffoli gate is developed. Tristate based optical logic operations not only increase the data handling capacity, it also increases the speed of different optical logic operations because of inherent parallelism of light. As frequency encoding principle is used to encode the qubits, so bit error problem can be ignored by the proposed system. The system is entirely all-optical in nature, so the system exhibits very high speed of operation (above tera hertz) with improved signal to noise ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S. Dutta, S. Mukhopadhyay, A new approach of parallel data transmission through optical waveguide with SOA based frequency encoding/decoding technique. Optik 123(3), 212–216 (2012). https://doi.org/10.1016/j.ijleo.2011.02.028

    Article  ADS  Google Scholar 

  2. S. Mukhopadhyay, Role of optics in super-fast information processing. Indian J. Phys. 84, 1069–1074 (2010). https://doi.org/10.1007/s12648-010-0101-4

    Article  ADS  Google Scholar 

  3. M. Mandal, P. De, S. Lakshan, M.N. Sarfaraj, S. Hazra, A. Dey, S. Mukhopadhyay, A review of electro-optic, semiconductor optical amplifier and photonic crystal-based optical switches for application in quantum computing. J. Opt. (2022). https://doi.org/10.1007/s12596-022-01045-1

    Article  Google Scholar 

  4. S. Slussarenko, G.J. Pryde, Photonic quantum information processing: a concise review. Appl. Phys. Rev. 6(4), 041303 (2019). https://doi.org/10.1063/1.5115814

    Article  ADS  Google Scholar 

  5. S. Srivastava, U. Chaurasiya, P. Tiwari, A. Misal, K.K. Upadhyay, All-optical frequency-encoded Toffoli gate. J. Opt. Commun. (2021). https://doi.org/10.1515/joc-2021-0217

    Article  Google Scholar 

  6. S. Dutta, S. Mukhopadhyay, Alternating approach of implementing frequency encoded all-optical logic gates and flip-flop using semiconductor optical amplifier. Optik 122(12), 1088–1094 (2011). https://doi.org/10.1016/j.ijleo.2010.06.046

    Article  ADS  Google Scholar 

  7. S. Dey, S. Mukhopadhyay, A new approach of implementing phase encoded quantum SRN gate. Electron. Lett. (2017). https://doi.org/10.1049/el.2017.2500

    Article  Google Scholar 

  8. S. Dey, S. Mukhopadhyay, All-optical integrated square root of Pauli-Z (SRZ) gates using polarization and phase encoding. J. Opt. (2019). https://doi.org/10.1007/s12596-019-00568-4

    Article  Google Scholar 

  9. S. Dey, S. Mukhopadhyay, Implementation of all-optical Pauli-Y gate by the integrated phase and polarization encoding. IET Optoelectron. 12(4), 176–179 (2018). https://doi.org/10.1049/iet-opt.2017.0138

    Article  Google Scholar 

  10. S. Dey, P. De, S. Mukhopadhyay, An all-optical implementation of Fredkin gate using kerr effect. Optoelectron. Lett. 15(4), 317–320 (2019). https://doi.org/10.1007/s11801-019-8170-x

    Article  ADS  Google Scholar 

  11. P. De, S. Ranwa, S. Mukhopadhyay, Implementation of all-optical Toffoli gate by 2D Si-air photonic crystal. IET Opotelectron. 15, 139–148 (2021). https://doi.org/10.1049/ote2.12029

    Article  Google Scholar 

  12. B. Sarkar, S. Mukhopadhyay, An all-optical scheme for implementing an integrated Pauli’s X, Y and Z quantum gates with optical switches. J. Opt. 46(2), 143–148 (2017). https://doi.org/10.1007/s12596-017-0398-x

    Article  Google Scholar 

  13. D. Samanta, S. Mukhopadhyay, All-optical method of developing parity generator and checker with polarization encoded light signal. J. Opt. 41, 167–172 (2012). https://doi.org/10.1007/s12596-012-0080-2

    Article  Google Scholar 

  14. D. Samanta, Implementation of polarization-encoded quantum Toffoli gate. J. Opt. (2018). https://doi.org/10.1007/s12596-018-0496-4

    Article  Google Scholar 

  15. M. Connelly, Semiconductor optical amplifiers (Springer, New York, 2002). https://doi.org/10.1016/B0-12-369395-0/00662-X

    Book  Google Scholar 

  16. S. Saha, S. Biswas, S. Mukhopadhyay, An alternative approach for binary to decimal conversion of frequency encoded optical data using MZI-SOA switch. J. Opt. 51, 357–370 (2022). https://doi.org/10.1007/s12596-021-00786-9

    Article  Google Scholar 

  17. N.K. Dutta, Q. Wang, G. Zhu, J. Jaques, A.B. Piccirilii, J. Leuthold, Semiconductor optical amplifiers-functional applications. J. Opt. 33(4), 197–219 (2004). https://doi.org/10.1007/BF03354765

    Article  Google Scholar 

  18. A.J. Poustie, K.J. Blow, Demonstration of an all-optical Fredkin gate. Opt. Commun. 174(1–4), 317–320 (2000). https://doi.org/10.1016/S0030-4018(99)00722-1

    Article  ADS  Google Scholar 

  19. N. Ghazali, M. Wahid, N.A. Hambali, N. Juhari, M. Shahimin, Characterization of all-optical Feynman and Fredkin gates utilizing optimized SOANOLM. AIP Conf. Proc. 2045, 020079 (2018)

    Article  Google Scholar 

  20. S.K. Garai, Novel method of designing all optical frequency-encoded Fredkin and Toffoli logic gates using semiconductor optical amplifiers. IET Optoelectron. 5(6), 247–254 (2012). https://doi.org/10.1049/iet-opt.2010.0077

    Article  Google Scholar 

  21. D.K. Tripathi, Investigations with reversible Feynman gate and irreversible logic schematics. J. Opt. Commun. (2017). https://doi.org/10.1515/joc-2017-0106

    Article  Google Scholar 

  22. V. Arun, A.K. Singh, N.K. Shukla, D.K. Tripathi, Design and performance analysis of SOA–MZI based reversible toffoli and irreversible AND logic gates in a single photonic circuit. Opt. Quantum Electron. 48, 445 (2016). https://doi.org/10.1007/s11082-016-0711-y

    Article  Google Scholar 

  23. S. Hazra, S. Mukhopadhyay, Implementation of quantum optical tristate CNOT gate using frequency encoding principle with a semiconductor optical amplifier. Optoelectron. Lett. 19, 269–273 (2023). https://doi.org/10.1007/s11801-023-2195-x

    Article  ADS  Google Scholar 

  24. M.N. Sarfaraj, S. Mukhopadhyay, All-optical scheme for implementation of tri-state Pauli-X, Y and Z quantum gates using phase encoding. Optoelectron. Lett. 17, 746–750 (2021). https://doi.org/10.1007/s11801-021-1037-y

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the INSPIRE Fellowship scheme of Department of Science and Technology, Government of India, for extending a research fellowship to Snigdha Hazra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snigdha Hazra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazra, S., Mukhopadhyay, S. Quantum optical tristate Toffoli gate using frequency encoding principle of light with semiconductor optical amplifier. J Opt 53, 940–948 (2024). https://doi.org/10.1007/s12596-023-01330-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-023-01330-7

Keywords

Navigation