Skip to main content
Log in

Simulation and fabrication of ZnO/SiO2-based 1D Photonic crystals for light trapping application

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In this work, we investigate the photonic stop band of multilayers, which is the simplest possible 1D photonic crystal, using MIT electromagnetic equation propagation software. The transmission spectra were simulated, and the effect of the number of layers and the contrast in the dielectric constant on the photonic band gap was studied. The ZnO/SiO2 multilayer was fabricated using radio frequency magnetron sputtering. The refractive indices of ZnO and SiO2 were found from the absorption spectra. The transmission spectra of the photonic crystals with eleven layers were studied using a UV–visible spectrophotometer. A dip in the transmission spectra in the wavelength range of blue was observed. The experimental result matched the simulated transmission spectra. The cross-sectional view of the multilayers was observed using a field emission scanning electron microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Ghosh, K.K. Ghosh, R. Chakraborty, Narrow band filter using 1D periodic structure with defects for DWDM systems. Opt. Commun. 289, 75–80 (2013). https://doi.org/10.1016/j.optcom.2012.10.001

    Article  ADS  Google Scholar 

  2. F. Scotognella et al., Metal oxide one dimensional photonic crystals made by RF sputtering and spin coating. Ceram. Int. 41(7), 8655–8659 (2015). https://doi.org/10.1016/j.ceramint.2015.03.077

    Article  Google Scholar 

  3. K.X. Wang, Z. Yu, V. Liu, A. Raman, Y. Cui, S. Fan, Light trapping in photonic crystals. Energy Environ. Sci. 7(8), 2725–2738 (2014). https://doi.org/10.1039/c4ee00839a

    Article  Google Scholar 

  4. T. Senn, J. Bischoff, N. Nüsse, M. Schoengen, B. Löchel, Fabrication of photonic crystals for applications in the visible range by nanoimprint lithography. Photonics Nanostructures Fundam. Appl. 9(3), 248–254 (2011). https://doi.org/10.1016/j.photonics.2011.04.007

    Article  ADS  Google Scholar 

  5. P. Bermel, C. Luo, L. Zeng, L.C. Kimerling, J.D. Joannopoulos, Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals. Opt. Express 15(25), 16986 (2007). https://doi.org/10.1364/oe.15.016986

    Article  ADS  Google Scholar 

  6. B.K. Singh, S. Tiwari, M.K. Chaudhari, P.C. Pandey, Tunable photonic defect modes in one-dimensional photonic crystals containing exponentially and linearly graded index defect. Optik (Stuttg) 127(16), 6452–6462 (2016). https://doi.org/10.1016/j.ijleo.2016.04.067

    Article  ADS  Google Scholar 

  7. L. Fan, W. Li, W. Jin, M. Orenstein, S. Fan, Maximal nighttime electrical power generation via optimal radiative cooling. Opt. Express 28(17), 25460 (2020). https://doi.org/10.1364/oe.397714

    Article  ADS  Google Scholar 

  8. W. Li, M. Dong, L. Fan, J.J. John, Z. Chen, S. Fan, Nighttime radiative cooling for water harvesting from solar panels. ACS Photonics 8(1), 269–275 (2021). https://doi.org/10.1021/acsphotonics.0c01471

    Article  Google Scholar 

  9. H.S. Dutta, A.K. Goyal, V. Srivastava, S. Pal, Coupling light in photonic crystal waveguides: a review. Photonics Nanostructures - Fundam. Appl. 20, 41–58 (2016). https://doi.org/10.1016/j.photonics.2016.04.001

    Article  ADS  Google Scholar 

  10. B.K. Singh, P.C. Pandey, A study of optical reflectance and localization modes of 1-D fibonacci photonic quasicrystals using different graded dielectric materials. J. Mod. Opt. 61(11), 887–897 (2014). https://doi.org/10.1080/09500340.2014.914587

    Article  ADS  Google Scholar 

  11. P. Bienstman, R. Baets, Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers. Opt. Quantum Electron. 33(4–5), 327–341 (2001). https://doi.org/10.1023/A:1010882531238

    Article  Google Scholar 

  12. A.F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J.D. Joannopoulos, S.G. Johnson, Meep: a flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 181(3), 687–702 (2010). https://doi.org/10.1016/j.cpc.2009.11.008

    Article  ADS  Google Scholar 

  13. G. Rosolen and A. Cola,Fabrication of photonic crystal structures by electron beam lithography, Conf. Optoelectron. Microelectron. Mater. Devices, Proceedings, COMMAD. pp. 66–69, (2006). doi: https://doi.org/10.1109/COMMAD.2006.4429881.

  14. S.H. Kim, K.D. Lee, J.Y. Kim, M.K. Kwon, S.J. Park, Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography. Nanotechnology 18(5), 055306 (2007). https://doi.org/10.1088/0957-4484/18/5/055306

    Article  ADS  Google Scholar 

  15. M. Nishimoto, K. Ishizaki, K. Maekawa, Y. Liang, K. Kitamura, S. Noda, Fabrication of photonic crystal lasers by MBE air-hole retained growth. Appl. Phys. Express 7(9), 092703 (2014). https://doi.org/10.7567/APEX.7.092703

    Article  ADS  Google Scholar 

  16. M. Duneau, F. Delyon, M. Audier, Holographic method for a direct growth of three-dimensional photonic crystals by chemical vapor deposition. J. Appl. Phys. 96(5), 2428–2436 (2004). https://doi.org/10.1063/1.1776322

    Article  ADS  Google Scholar 

  17. T. Kawashima, Autocloning technology: fabrication method for photonic crystals based on sputtering process. American Institute of Physics. 560(1), 115–122 (2003). https://doi.org/10.1063/1.1372721

    Article  ADS  Google Scholar 

  18. X. Meng et al., Design and fabrication of photonic crystals in epitaxy-free silicon for ultrathin solar cells. To cite this version : HAL Id : hal-00666247 Design and fabrication of photonic crystals in epitaxial free silicon for ultrathin solar cells (2012)

  19. M.H. Suhail, G.M. Rao, S. Mohan, Dc reactive magnetron sputtering of titanium-structural and optical characterization of TiO2 films. J. Appl. Phys. 71(3), 1421–1427 (1992). https://doi.org/10.1063/1.351264

    Article  ADS  Google Scholar 

  20. G. Holmén, H. Jacobsson, The influence of oxygen on SiO2 sputtering. J. Appl. Phys. 68(6), 2962–2965 (1990). https://doi.org/10.1063/1.346431

    Article  ADS  Google Scholar 

  21. P. Pansila, N. Witit-Anun, S. Chaiyakun, Influence of sputtering power on structure and photocatalyst properties of DC magnetron sputtered TiO2 thin film. Procedia Eng. 32, 862–867 (2012). https://doi.org/10.1016/j.proeng.2012.02.024

    Article  Google Scholar 

  22. K. Takamura, Y. Abe, K. Sasaki, Influence of oxygen flow ratio on the oxidation of Ti target and the formation process of TiO2 films by reactive sputtering. Vacuum 74(3–4), 397–401 (2004). https://doi.org/10.1016/j.vacuum.2004.01.006

    Article  ADS  Google Scholar 

  23. N.A. Mortensen, Photonic crystal fibres: mapping Maxwell’s equations onto a Schrödinger equation eigenvalue problem. J. Eur. Opt. Soc. 1, 1–7 (2006). https://doi.org/10.2971/jeos.2006.06009

    Article  Google Scholar 

  24. A. Macleod, The quarterwave stack: 2 properties. SVC Fall Bull. 16(3), 16–21 (2012)

    Google Scholar 

  25. S. John, V. Geetha, and M. Francis, “Effect of pH on the optical and structural properties of SnS prepared by chemical bath deposition method,” IOP Conf. Ser. Mater. Sci. Eng. vol. 872, no. 1, (2020). doi: https://doi.org/10.1088/1757-899X/872/1/012139.

  26. H.S. Bolarinwa et al., Determination of optical parameters of zinc oxide nanofibre deposited by electrospinning technique. J. Taibah Univ. Sci. 11(6), 1245–1258 (2017). https://doi.org/10.1016/j.jtusci.2017.01.004

    Article  Google Scholar 

  27. S. Fan, Z. Wang, D.A.B. Miller, P.R. Villeneuve, H.A. Haus, J.D. Joannopoulos, Photonic crystal for communication applications. Act. Passiv. Opt. Compon. WDM Commun. II 4870(1), 339 (2002)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Department of Science and Technology (DST-FIST), India, for the financial support rendered in setting up the research lab (grant number SR/FST/College-237/2014 (C)) and the University Grants Commission, India, for providing research funds through a minor project (grant number MRP(S)-0191/12–13/KLCA021/UGC-SWRO).

Author information

Authors and Affiliations

Authors

Contributions

SJ was involved in methodology, validation, investigation, writing—original draft. KAL contributed to resources. APRM was involved in supervision. VG contributed to conceptualization, formal analysis, supervision, writing—review and editing.

Corresponding author

Correspondence to Smiya John.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

John, S., Lazar, K.A., Mary, A.P.R. et al. Simulation and fabrication of ZnO/SiO2-based 1D Photonic crystals for light trapping application. J Opt 53, 1035–1041 (2024). https://doi.org/10.1007/s12596-023-01297-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-023-01297-5

Keywords

Navigation