Skip to main content
Log in

Broadband absorber using ultra-thin plasmonic metamaterials nanostructure in the visible and near-infrared regions

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this work, an ultra-thin plasmonic metamaterial nanostructure absorber is simulated using the finite difference time domain method in the visible and near-infrared regions. A periodic square titanium-silica cap coated with glass medium is mounted on top of a silver substrate. The presence of the glass host enhances the absorption bandwidth by 276%. With an almost perfect metal–insulator-metal absorber, over 90% absorbance has been obtained for wavelengths from 440 to 1850 nm, producing an absorption bandwidth of 1410 nm. The impact of changing dimensions and using different materials on the absorption spectra has been investigated in both visible and near-infrared regimes. The considered metals for the top layer are titanium, nickel, silver, aluminum, and gold; however, the insulators are silica, quartz, vanadium dioxide, methyl methacrylate, and aluminum dioxide. In addition, aluminum, silver, copper, and gold are then simulated as a substrate. The optimum structure, which produces the maximum absorber bandwidth, 1410 nm, with a higher absorption, over 90%, is Glass-Ti–SiO2–Ag. The finding illustrates that the optimum dimensions of the Ti–SiO2 cab and the square base unit cell of the silver substrate are 250 nm and 200 nm, respectively. Finally, the absorption bandwidth is calculated using different polarization angles ranges from 10° to 70° with a step10°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Askari, M.: A near infrared plasmonic perfect absorber as a sensor for hemoglobin concentration detection. Opt. Quant. Electron. 53, 67–81 (2021). https://doi.org/10.1007/s11082-020-02703-z

    Article  Google Scholar 

  • Askari, M., Hosseini, M.V.: Infrared metamaterial refractive-index-based sensor. JOSA B 37, 2712–2718 (2020). https://doi.org/10.1364/JOSAB.392977

    Article  ADS  Google Scholar 

  • Askari, M., Hosseini, M.V.: A novel metamaterial design for achieving a large group index via classical electromagnetically induced reflectance. Opt. Quant Electron. 52, 191–208 (2020). https://doi.org/10.1007/s11082-020-02302-y

    Article  Google Scholar 

  • Cui, Y., He, Y., Jin, Y., Ding, F., Yang, L., Ye, Y., Zhong, S., Lin, Y., He, S.: Plasmonic and metamaterial structures as electromagnetic absorbers. Laser Photonics Rev. 8, 495–520 (2014)

    Article  ADS  Google Scholar 

  • Dragoman, M., Dragoman, D.: Plasmonics: applications to nanoscale te rahertz and optical devices . Prog. Quantum. Electron. 32, 1–41 (2008)

    Article  ADS  Google Scholar 

  • Fann, C.H., Zhang, J., ElKabbash, M., Donaldson, W.R., Campbell, E.M., Guo, C.: Broadband infrared plasmonic metamaterial absorber with multipronged absorption mechanisms. Opt. Express 27, 27917–27926 (2019)

    Article  ADS  Google Scholar 

  • Gao, H., Peng, W., Cui, W., Chu, S., Yu, L., Yang, X.: Ultraviolet to near infrared titanium nitride broadband plasmonic absorber. Opt. Mater. 97,109377, (2019).

  • Hao, J., Zhou, L., Qiu, M.: Nearly total absorption of light and heat generation by plasmonic metamaterials. Phys. Rev. B 83, 165107 (2011)

  • Hedayati, M.K., Zillohu, A.U., Strunskus, T., Faupel, F., Elbahri, M.: Plasmonic tunable metamaterial absorber as ultraviolet protection film. Appl. Phys. Lett. 104 , 041103 (2014)

  • Hedayati, M.K., Faupel, F., Elbahri, M.: Review of plasmonic nanocomposite metamaterial absorber. Materials 7, 1221–1248 (2014)

    Article  ADS  Google Scholar 

  • Landy, N.I., Bingham, C.M., Tyler, T., Jokerst, N., Smith, D.R. Padilla, W.J.: Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Phys. Rev. B 79, 125104 (2009).

  • Lei, L., Li, S., Huang, H., Tao, K., Xu, P.: Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial. Opt. Express 26(5), 5686–5693 (2018)

    Article  ADS  Google Scholar 

  • Li, D., Szabó, Z., Qing, X., Li, E.P., Chen, Z.N.: A high gain antenna with an optimized metamaterial inspired superstrate. IEEE Trans. Antennas Propag. 60, 6018–6023 (2012)

    Article  ADS  Google Scholar 

  • Liu, J., He, H., Xiao, D., Liu, Y.: Recent advances of plasmonic nanoparticles and their applications. Materials 11, 1833 (2018)

    Article  ADS  Google Scholar 

  • Maier, T., Brueckl, H.: Multispectral microbolometers for the midinfrared. Opt. Lett. 35, 3766–3768 (2010)

    Article  ADS  Google Scholar 

  • Ni, X., Wong, Z.J., Mrejen, M., Wang, Y., Zhang, X.: An ultrathin invisibility skin cloak for visible light. Science 349, 1310–1314 (2015)

    Article  ADS  Google Scholar 

  • Palik, E.: Handbook of Optical Constants of Solids. Academic, New York (1985)

    Google Scholar 

  • Pradhan, J.K., Achanta, V.G., Agarwal, A.K., Ramakrishna, S.A.: Performance enhancement due to a top dielectric coating on a metamaterial perfect absorber. Appl. Opt. 59, E118–E125 (2020)

    Article  Google Scholar 

  • Ra’Di, Y., Simovski, C. R., Tretyakov, S.A.: Thin perfect absorbers for electromagnetic waves: theory, design, and realizations. Phys. Rev. Appl. 3, 037001 (2015).

  • Segovia, P., Marino, G., Krasavin, A.V., Olivier, N., Wurtz, G.A., Belov, P.A., Ginzburg, P., Zayats, A.V.: Hyperbolic metamaterial antenna for second-harmonic generation tomography. Opt. Express 23, 30730–30738 (2015)

    Article  ADS  Google Scholar 

  • Shin, D., Urzhumov, Y., Jung, Y., Kang, G., Baek, S., Choi, M., Park, H., Kim, K., Smith, D.R.: Broadband electromagnetic cloaking with smart metamaterials. Nat. Commun. 3, 1–8 (2012)

    Google Scholar 

  • Wang, Y., Sun, T., Paudel, T., Zhang, Y., Ren, Z., Kempa, K.: Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells. Nano Lett. 12, 440–445 (2012)

    Article  ADS  Google Scholar 

  • Watts, C., Liu, X., Padilla, W.: Advanced materials 24, 98 -112 (2012)

  • Wu, C., Neuner III, B., John, J., Milder, A., Zollars, B., Savoy, S., & Shvets, G.: Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems. J. Opt. 14 ,024005 (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Elrashidi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elrashidi, A., Tharwat, M.M. Broadband absorber using ultra-thin plasmonic metamaterials nanostructure in the visible and near-infrared regions. Opt Quant Electron 53, 426 (2021). https://doi.org/10.1007/s11082-021-03089-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03089-2

Keywords

Navigation