Skip to main content
Log in

Numerical study of photonic crystal fiber-based optical biosensor for detection of cervical cancer

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

The present study has been performed with the purpose of designing a highly sensitive biosensor for cervical cancer cell detection. The structure of the proposed design for biosensor includes a hollow core, four-quarter circular-type airholes spread through the cladding region, and Zeonex (R.I.-1.53) as background fiber material. Further, guiding properties of the proposed waveguide have been studied. The suggested photonic crystal fiber structure has been operated in the THz frequency regime. COMSOL Multiphysics 5.6a software based on finite element method and MATLAB 17b software have been used to examine various guiding properties of the sensor. Various performance parameters such as effective refractive index 1.3414, effective area 8.4733 × 10−9 µm2, nonlinearity 9.9468W−1 km−1, propagation constant 2.5703 × 10−26, relative sensitivity 78.68%, and confinement loss 5.1406 × 10−26 cm−1 have been evaluated for cervical cancer cells. The simplified design reduces fabrication complexity and makes it cost-effective. It enhances the optical sensing capabilities of the proposed sensor model. The proposed design will add new opportunities in the field of bio photonics. Moreover, it leads to better applications in medical field for detecting and diagnosing cervical cancer cells disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Z.H. Tawfiq, M.A. Fakhri, S.A. Adnan, Photonic crystal fibres PCF for different sensors in review, IOP conference series: materials science and engineering, vol. 454(1) (2018). https://doi.org/10.1088/1757-899X/454/1/012173

  2. X.D. Wang, O.S. Wolfbeis, Fiber-optic chemical sensors and biosensors (2008–2012). Anal. Chem. 85(2), 487–508 (2013). https://doi.org/10.1021/ac303159b

    Article  Google Scholar 

  3. M.F.H. Arif et al., A nonlinear photonic crystal fiber for liquid sensing application with high birefringence and low confinement loss. Sens. Bio-Sensing Res. 22, 100252 (2019). https://doi.org/10.1016/j.sbsr.2018.100252

    Article  Google Scholar 

  4. S. Yadav et al., Delineation of profoundly birefringent nonlinear photonic crystal fiber in terahertz frequency regime. J. Opt. Commun. (2022). https://doi.org/10.1515/joc-2022-0143

    Article  Google Scholar 

  5. S.M. Salimullah, M. Faisal, Ultra-wideband and coherent supercontinuum generation (near and mid-infrared) in dispersion flattened ZnGeP2 photonic crystal fiber. Alexandria Eng. J. 70, 289–300 (2023). https://doi.org/10.1016/j.aej.2023.03.002

    Article  Google Scholar 

  6. J. Tian et al., A photonic crystal fiber-based biosensor with quasi-D-shaped layout and ITO-graphene combination. Plasmonics 16(5), 1451–1460 (2021). https://doi.org/10.1007/s11468-020-01344-y

    Article  Google Scholar 

  7. F. Arhinful et al., A Highly birefringent negative chromatic dispersion photonic crystal fibre for long-haul transmission: design and analysis. Results Opt. 9, 100325 (2022). https://doi.org/10.1016/j.rio.2022.100325

    Article  Google Scholar 

  8. A. Habib et al., Extremely sensitive photonic crystal fiber-based cancer cell detector in the terahertz regime. Plasmonics 16(4), 1297–1306 (2021). https://doi.org/10.1007/s11468-021-01409-6

    Article  Google Scholar 

  9. R. Izadi et al., Multivariate analyses to develop a novel drug delivery system: Trying to expanding the system to bio-sensing of the human serum albumin. Sens. Bio-Sensing Res. 36, 100489 (2022). https://doi.org/10.1016/j.sbsr.2022.100489

    Article  Google Scholar 

  10. A.A.M. Bulbul, H. Rahaman, E. Podder, Design and quantitative analysis of low loss and extremely sensitive PCF-based biosensor for cancerous cell detection. Opt. Quantum Electron. 54(2), 1–16 (2022). https://doi.org/10.1007/s11082-022-03513-1

    Article  Google Scholar 

  11. D. Vijayalakshmi, Photonic crystal fiber-based skin cancer sensor. J. Opt. 51(3), 646–652 (2022). https://doi.org/10.1007/s12596-021-00801-z

    Article  Google Scholar 

  12. M.M.A. Eid et al., Mono-rectangular core photonic crystal fiber (MRC-PCF) for skin and blood cancer detection. Plasmonics 16(3), 717–727 (2021). https://doi.org/10.1007/s11468-020-01334-0

    Article  Google Scholar 

  13. Shivangani et al., Numerical study to enhance the sensitivity of a surface plasmon resonance sensor with blueP/WS2-covered Al2 O3-nickel nanofilms. Nanomaterials 12(13), 2205 (2022). https://doi.org/10.3390/nano12132205

    Article  Google Scholar 

  14. S. Sen et al., Zeonex based decagonal photonic crystal fiber (D-PCF) in the terahertz (THz) band for chemical sensing applications. Sens. Bio-Sensing Res. 31, 100393 (2021). https://doi.org/10.1016/j.sbsr.2020.100393

    Article  Google Scholar 

  15. J. Qin et al., Terahertz detection of toxic gas using a photonic crystal fiber. Opt. Fiber Technol. 52, 101990 (2019). https://doi.org/10.1016/j.yofte.2019.101990

    Article  Google Scholar 

  16. M.M. Hasan et al., Heptagonal photonic crystal fiber based chemical sensor in THz regime, In 2019 Joint 8th international conference on informatics, electronics vision (ICIEV) and 2019 3rd international conference on imaging vision pattern recognition, icIVPR 2019 with Int. Conf. Act. Behav. Comput. ABC 2019, IEEE, 40–44, (2019), https://doi.org/10.1109/ICIEV.2019.8858555

  17. G.P. Mishra et al., Terahertz refractive index sensor with high sensitivity based on two-core photonic crystal fiber. Microw. Opt. Technol. Lett. 63(1), 24–31 (2021). https://doi.org/10.1002/mop.32573

    Article  Google Scholar 

  18. B.K. Paul et al., Quasi-photonic crystal fiber-based spectroscopic chemical sensor in the terahertz spectrum: design and analysis. IEEE Sens. J. 18(24), 9948–9954 (2018). https://doi.org/10.1109/JSEN.2018.2872892. (Institute of Electrical and Electronics Engineers Inc)

    Article  ADS  Google Scholar 

  19. S. Yadav, P. Lohia, Eminently sensitive mono - rectangular photonic crystal fiber-based sensor for cancer cell detection in THz regime. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01191-0

    Article  Google Scholar 

  20. M.E. Rahaman, M.B. Hossain, H.S. Mondal, Effect of background materials in photonic crystal fiber sensor. Opt. Rev. 29(1), 1–6 (2022). https://doi.org/10.1007/s10043-021-00712-1

    Article  Google Scholar 

  21. M.R. Islam et al., A novel hollow core terahertz refractometric sensor. Sens. Bio-Sensing Res. 25, 100295 (2019). https://doi.org/10.1016/j.sbsr.2019.100295

    Article  Google Scholar 

  22. S. Singh et al., Sensitivity enhancement of SPR biosensor employing heterostructure blue phosphorus/MoS2and silicon layer. Emerg. Mater. Res. 11(2), 239–250 (2022). https://doi.org/10.1680/jemmr.22.00009

    Article  MathSciNet  Google Scholar 

  23. M. De, T.K. Gangopadhyay, V.K. Singh, Prospects of photonic crystal fiber as physical sensor: an overview. Sensors (Switzerland) 19(3), 464 (2019). https://doi.org/10.3390/s19030464

    Article  ADS  Google Scholar 

  24. N.A. Mohammed et al., Early detection of brain cancers biomedical sensor with low losses and high sensitivity in the terahertz regime based on photonic crystal fiber technology. Opt. Quantum Electron. 55(3), 1–21 (2023). https://doi.org/10.1007/s11082-022-04515-9

    Article  Google Scholar 

  25. L. Zhang, G. Jun Ren, J. Quan Yao, A new photonic crystal fiber gas sensor based on evanescent wave in terahertz wave band: Design and simulation. Optoelectron. Lett. 9(6), 438–440 (2013). https://doi.org/10.1007/s11801-013-3157-5

    Article  ADS  Google Scholar 

  26. A.A.M. Bulbul et al., Design and numerical analysis of a PCF-based bio-sensor for breast cancer cell detection in the THz regime. Sens. Bio-Sensing Res. 30, 100388 (2020). https://doi.org/10.1016/j.sbsr.2020.100388

    Article  Google Scholar 

  27. R.H. Jibon, M.E. Rahaman, M.A. Alahe, Detection of primary chemical analytes in the THz regime with photonic crystal fiber. Sens. Bio-Sensing Res. 33, 100427 (2021). https://doi.org/10.1016/j.sbsr.2021.100427

    Article  Google Scholar 

  28. N.A. Mohammed et al., High-sensitivity early detection biomedical sensor for tuberculosis with low losses in the terahertz regime based on photonic crystal fiber technology. Photonic Sens. 13(2), 1–16 (2023). https://doi.org/10.1007/s13320-023-0675-z

    Article  Google Scholar 

  29. S. Yadav, P. Lohia, D.K. Dwivedi, A Novel Approach for Identification of Cancer Cells Using a Photonic Crystal Fiber-Based Sensor in the Terahertz Regime. Plasmonics (2023). https://doi.org/10.1007/s11468-023-01887-w

    Article  Google Scholar 

  30. S. Sharma et al., Design and analysis of chalcogenide based photonic crystal fiber for non-linear optical applications, In 2020 international conference on electrical and electronics engineering (ICE3) 1, 580–582 (2020). https://doi.org/10.1109/ICE348803.2020.9122968

  31. M. Ekhlasur Rahaman et al., Highly sensitive photonic crystal fiber liquid sensor in terahertz frequency range. Mater. Today: Proc. 43, 3815–3820 (2020). https://doi.org/10.1016/j.matpr.2020.11.413

    Article  Google Scholar 

  32. S.M.A. Razzak, Y. Namihira, Tailoring dispersion and confinement losses of photonic crystal fibers using hybrid cladding. J. Light. Technol. 26(13), 1909–1914 (2008). https://doi.org/10.1109/JLT.2008.922323

    Article  ADS  Google Scholar 

  33. S.K. Pandey, J.B. Maurya, Y.K. Prajapati, Photonic crystal fiber with high nonlinearity and extremely negative dispersion. Opt. Quantum Electron. 53(12), 724 (2021). https://doi.org/10.1007/s11082-021-03376-y

    Article  Google Scholar 

  34. A. Panda, P. Puspa Devi, Photonic crystal biosensor for refractive index based cancerous cell detection. Opt. Fiber Technol. 54, 102123 (2020). https://doi.org/10.1016/j.yofte.2019.102123

    Article  Google Scholar 

  35. H. Ademgil, Highly sensitive octagonal photonic crystal fiber based sensor. Optik (Stuttg) 125(20), 6274–6278 (2014). https://doi.org/10.1016/j.ijleo.2014.08.018

    Article  ADS  Google Scholar 

  36. M.M.A. Eid et al., Highly sensitive nonlinear photonic crystal fiber based sensor for chemical sensing applications. Microsyst. Technol. 27(3), 1007–1014 (2021). https://doi.org/10.1007/s00542-020-05019-w

    Article  Google Scholar 

  37. Reena et al., Rectangular-core large-mode-area photonic crystal fiber for high power applications: design and analysis. Appl. Opt. 55(15), 4095 (2016). https://doi.org/10.1364/ao.55.004095

    Article  ADS  Google Scholar 

  38. H. Ademgil, S. Haxha, PCF based sensor with high sensitivity, high birefringence and low confinement losses for liquid analyte sensing applications. Sensors (Switzerland) 15(12), 31833–31842 (2015). https://doi.org/10.3390/s151229891

    Article  ADS  Google Scholar 

  39. S. Singh et al., 2D nanomaterial-based surface plasmon resonance sensors for biosensing applications. Micromachines 11(8), 779 (2020). https://doi.org/10.3390/mi11080779

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the research articles which was helpful in our research work. One of the authors (Dharini Srivastava) is thankful to MMMUT, Gorakhpur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Dwivedi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, D., Yadav, S., Mishra, A.C. et al. Numerical study of photonic crystal fiber-based optical biosensor for detection of cervical cancer. J Opt 53, 1155–1162 (2024). https://doi.org/10.1007/s12596-023-01254-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-023-01254-2

Keywords

Navigation