Skip to main content
Log in

Optical Kerr nonlinear material for expressing the trigonometric ratios of compound angles

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

An innovative all-optical device is proposed to effectively express the trigonometric ratios of compound angles based on the fascinating intensity dependent changes of refractive index of a nonlinear material. The device has profound applications in numerous domains of research, such as astronomy, oceanography, seismology, civil engineering, electronics, phonetics, medical imaging, and the development of computer music. Optical switch and optical Ternary Encoder play major role in this proposed device. To effectively execute this process, a single constant light source with a standardized intensity level ‘I’ has been strategically utilized, alongside multiple constant light sources, a beam combiner, and a beam splitter. In this scheme, different value of angles is represented by the different value of standard intensity level to express the trigonometric ratios of compound angles. Furthermore, in the proposed design, the output expression of the trigonometric ratios of compound angles are illustrated as the sum or subtraction of two outputs (2-bit ternary form) of two number of optical Ternary Encoders. As the proposed scheme is fully optical in nature, so this device can be employed in optical computation as well as photonic application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E. Garmire, Nonlinear optics in daily life. Opt. Express 21(25), 30532–30544 (2013)

    Article  ADS  Google Scholar 

  2. R. Bano, M. Asghar, K. Ayub, T. Mahmood, J. Iqbal, S. Tabassum, R. Zakaria, M.A. Gilani, A theoretical perspective on strategies for modelling high performance nonlinear optical materials. Front. Mater. 8, 532 (2021)

    Article  ADS  Google Scholar 

  3. A. Chatterjee, S. Biswas, S. Mukhopadhyay, Method of frequency conversion of Manchester encoded data from a Kerr type of nonlinear medium. J. Opt. (2017). https://doi.org/10.1007/s12596-017-0393-2

    Article  Google Scholar 

  4. S.K. Chandra, S. Biswas, S. Mukhopadhyay, Phase-encoded all-optical reconfigurable integrated multilogic unit using phase information processing of four-wave mixing in semiconductor optical amplifier. IET Optoelectron 10(1), 1–6 (2016)

    Article  Google Scholar 

  5. S. Saha, de Paromita, S. Mukhopadhyay, All optical frequency encoded quaternary memory unit using symmetric configuration of MZI-SOA. Opt. Laser Technol. 131, 106386 (2020)

    Article  Google Scholar 

  6. S. Biswas, S. Mukhopadhyay, All-optical approach for conversion of a binary number having a fractional part to its decimal equivalent to three places of decimal using single system optical tree architecture. J Opt 43(2), 122–129 (2014). https://doi.org/10.1007/s12596-014-0187-8

    Article  Google Scholar 

  7. R.W. Boyd, Nonlinear optics (Academic press, Massachusetts, 2020)

    Google Scholar 

  8. S.D. Smith, Optical bistability, photonic logic and optical computation. Appl. Opt. 25, 1550–1564 (1986)

    Article  ADS  Google Scholar 

  9. G. Li, L. Lin, L. Shao, Y. Yin, J. Hua, Parallel optical negabinary arithmetic based on logic operations. Appl. Opt. 36, 1011–1016 (1997)

    Article  ADS  Google Scholar 

  10. H.J. Caulfield, Perspectives in optical computing. Computer 31(2), 22–25 (1998)

    Article  Google Scholar 

  11. M.A. Karim, A.A.S. Awwal, Optical computing: an Intro-duction (Wiley, New York) Chap. 3 pp. 35–56 (2003)

  12. L.K. Cotter, T.J. Drabik, R.J. Dillon, M.A. Handaschy, Ferro- electric-liquid-crystal/silicon-integrated circuit spatial light modulator. Opt. Lett. 15(5), 291–293 (1990)

    Article  ADS  Google Scholar 

  13. S.D. Smith, H.A. Mackenzie, J.G.H. Mathew, J.J.E. Reid, M.R. Taghizadeh, F.A.P. Tooley, A.C. Walker, Nonlinear optical circuit elements, logic gates for optical computers: the first digital circuits. Opt. Eng. 24(4), 569–574 (1985)

    Article  ADS  Google Scholar 

  14. N. Pahari, D.N. Das, S. Mukhopadhyay, All-optical method for the addition of binary data nonlinear materials. Appl. Opt. 43(33), 6147–6150 (2004)

    Article  ADS  Google Scholar 

  15. D. Psaltis, D. Brady, K. Wagner, Adaptive optical networks using photorefractive crystals. Appl. Opt. 27(9), 1752–1759 (1998)

    Article  ADS  Google Scholar 

  16. N. Pahari, A. Guchhait, All-optical serial data transfer between registers using optical mom-linear materials. Optik 123(5), 462–466 (2012)

    Article  ADS  Google Scholar 

  17. N. Pahari, A. Guchhait, A.D. Jana, Image edge detection scheme by the use of Kerr-type non-linear material and the verification of the scheme by computer simulation. Opt. Soc. India (2012). https://doi.org/10.1007/s12596-012-0082-0

    Article  Google Scholar 

  18. A. Guchhait, N. Pahari, N.B. Manik, Optical Kerr nonlinear material for calculating the coefficient of binomial expansion under any positive integral index. J. Opt. 51, 851–865 (2022). https://doi.org/10.1007/s12596-021-00823-7

    Article  Google Scholar 

  19. S. Biswas, S. Mukhopadhyay, An all optical scheme of secured cryptographic communication encoded with decimal data. Optik 124, 2376–2378 (2013)

    Article  ADS  Google Scholar 

  20. S. Biswas, S. Mukhopadhyay, An all optical approach for developing a system involving Kerr-material based switches for cryptographic encoding of binary data depending on the input parity. Optik 125, 1954–1956 (2014)

    Article  ADS  Google Scholar 

  21. S.P. Medhekar, P. Paltani, Proposal for optical switch using non- linear refraction. IEEE Photonics Technol. Lett. 18(15), 1579–1581 (2006)

    Article  ADS  Google Scholar 

  22. N. Mitra, S. Mukhopadhyay, Method of developing an all-optical synchronous counter by exploiting the Kerr non-linearity of the medium. Opt. Photonics Lett. 3(1), 23–30 (2010)

    Article  Google Scholar 

  23. Y. Fainman, C.C. Guest, S.H. Lee, Optical digital logic operations by two beams coupling in photorefractive material. Appl. Opt. 25(10), 1598–1603 (1986)

    Article  ADS  Google Scholar 

  24. N. Pahari, S. Mukhopadhyay, An all-optical R-S flip-flop by optical non-linear material. J. Opt. 34(3), 108–114 (2005)

    Article  Google Scholar 

  25. J.N. Roy, A.K. Maiti, D. Samanta, S. Mukhopadhyay, Tree-net architecture for integrated all-optical arithmetic operations and data comparison scheme with optical nonlinear material. Opt. Switch. Netw. 4(231), 237 (2007)

    Google Scholar 

  26. S.D. Smith, Lasers, nonlinear optics and optical computers. Nature 316(6026), 319–324 (1985)

    Article  ADS  Google Scholar 

  27. W. Nie, Optical nonlinearity: phenomena, applications, and materials. Adv. Mater. 5(7–8), 520–545 (1993)

    Article  Google Scholar 

  28. N.L. Kazanskiy, M.A. Butt, S.N. Khonina, Optical computing: status and perspectives. Nanomaterials 12(13), 2171 (2022)

    Article  Google Scholar 

  29. Z. Chai, X. Hu, F. Wang, X. Niu, J. Xie, Q. Gong, Ultrafast all-optical switching. Adv. Opt. Mater. 5(7), 1600665 (2017)

    Article  Google Scholar 

  30. S. Sahu, S. Dhar, Implementation of J-K and J–K master–slave flip-flops with nonlinear material in all-optical domain. Opt. Eng. 48(7), 075401–075401 (2009)

    Article  ADS  Google Scholar 

  31. S. Sahu, S. Dhar, All-optical implementation of arithmetic operation scheme using optical nonlinear material-based switching technique. Photonics Optoelectron 3, 37–50 (2014)

    Article  Google Scholar 

  32. X. Yang, X. Hu, H. Yang, Q. Gong, Ultracompact all-optical logic gates based on nonlinear plasmonic nanocavities. Nano Photonics 6(1), 365–376 (2017)

    Google Scholar 

  33. Y.-D. Wu, T.-T. Shih, M.-H. Chen, New all-optical logic gates based on the local nonlinear Mach-Zehnder interferometer. Opt. Express 16(1), 248–257 (2008)

    Article  ADS  Google Scholar 

  34. M. Moradi, M. Danaie, A.A. Orouji, Design of all-optical XOR and XNOR logic gates based on Fano resonance in plasmonic ring resonators. Opt. Quantum Electron. 51, 1–18 (2019)

    Article  Google Scholar 

  35. D. Samanta, S. Mukhopadhyay, All-optical method for maintaining a fixed intensity level of a light signal in optical computation. Opt. Commun. 281, 4851–4853 (2008)

    Article  ADS  Google Scholar 

  36. A. Guchhait, N. Pahari, N.B. Manik, All-optical decimal to ternary converter with the proper use of optical non-linear material. J. Opt. 49, 59–68 (2019). https://doi.org/10.1007/s12596-019-00579-1

    Article  Google Scholar 

  37. B. Sarkar, S. Mukhopadhyay, An optical system for sharp increase of light frequency by the use of multiple numbers of LiNbO3 crystals biased by sawtooth electronic pulse. Indian J. Phys. 95, 1865 (2021)

    Article  ADS  Google Scholar 

  38. S. Mukhopadhyay, Role of optics in super-fast information processing. Indian J. Phys. 84, 1069 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apurba Guchhait.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest related to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guchhait, A., Pahari, N. & Manik, N.b. Optical Kerr nonlinear material for expressing the trigonometric ratios of compound angles. J Opt 53, 892–905 (2024). https://doi.org/10.1007/s12596-023-01245-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-023-01245-3

Keywords

Navigation