Skip to main content
Log in

Optical quadruple reversible hybrid new gate

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

With the demand of the day, the multivalued logic (MVL) is gaining its momentum to meet up the demand of the latest technology dealing with huge volume of data. In multivalued logic (MVL) system, the trinary- and quadruple-valued logics are the very alternatives in recent scenario. Further, the reversible computing not only reflects a fundamental law of physics but also offers potential to achieve zero dissipation by preventing entropy loss during computation. In this paper, a new gate called optical quadruple reversible hybrid new gate (OQRHNG) is introduced to explore the benefits of multivalued logic (MVL) in association with reversible logic computation. The potential application areas of HNG are also implemented accordingly in this paper. Moreover, the ultra-fast optical signal processing may be achieved by using SLM and Savart plate. Finally, the performance of the optical quadruple reversible hybrid new gate (OQRHNG) is evaluated using Python simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. E. Dubrova, Multiple-valued logic synthesis and optimization. in Logic Synthesis and Verification, ed. by S. Hassoun, T. Sasao (Springer, Boston, 2002), pp. 89–114. https://doi.org/10.1007/978-1-4615-0817-5_4

    Chapter  Google Scholar 

  2. E.L. Post, Finite combinatory processes—formulation. J. Symbol. Logic. 1(3), 103–105 (1936). https://doi.org/10.2307/2269031

    Article  MATH  Google Scholar 

  3. A.W. Lohmann, Polarization and optical logic. Appl. Opt. 25(10), 1594–1597 (1986). https://doi.org/10.1364/AO.25.001594

    Article  ADS  Google Scholar 

  4. C. Reis, T. Chattopadhyay, P. André, A. Teixeira, Single Mach–Zehnder interferometer based optical Boolean logic gates. Appl. Opt. 51(36), 8693–8701 (2012). https://doi.org/10.1364/AO.51.008693

    Article  ADS  Google Scholar 

  5. A. Bhattacharya, S. Das, A. Sarkar et al., Modified septenary system-based logic gates using SLM and Savart plate. J Opt. 50, 410–426 (2021). https://doi.org/10.1007/s12596-021-00704-z

    Article  Google Scholar 

  6. A. Bhattacharya, S. Das, A. Sarkar, N. Bose, S. Sen, S. Chandra, I. Das, K.A.H. Tazim Arif, A. Ghosh, A.K. Ghosh, A. Basuray, Newly designed modified trinary-valued logic gates using SLM-based Savart plate. J. Opt. (2020). https://doi.org/10.1007/s12596-020-00597-4.

    Article  Google Scholar 

  7. A. Bhattacharya, S. Das, A. Sarkar, N. Bose, A.K. Ghosh, Trinary magnitude comparator using SLM based Savart plate. Optoelectron. Lett. (2019). https://doi.org/10.1007/s11801-019-9029-x

    Article  Google Scholar 

  8. A.A.S. Awwal, M.N. Islam, M.A. Karim, Modified signed-digit trinary arithmetic by using optical symbolic substitution. Appl. Opt. 31(11), 1687–1694 (1994). https://doi.org/10.1364/AO.31.001687

    Article  ADS  Google Scholar 

  9. S.K. Garai, A. Pal, S. Mukhopadhyay, All-optical frequency-encoded inversion operation with tristate logic using reflecting semiconductor optical amplifiers. Optik (Elsevier) 121(16), 1462–1465 (2010). https://doi.org/10.1016/j.ijleo.2009.02.011

    Article  ADS  Google Scholar 

  10. S.K. Garai, All-optical quaternary logic gates – An extension of binary logic gates. Opt. Laser Technol. 67, 125–136 (2015). https://doi.org/10.1016/j.optlastec.2014.10.012

    Article  ADS  Google Scholar 

  11. S. Mandal, D. Mandal, M.K. Mandal et al., Design of optical quaternary adder and subtractor using polarization switching. J. Opt. 47, 332–350 (2018). https://doi.org/10.1007/s12596-018-0460-3

    Article  MATH  Google Scholar 

  12. A.K. Ghosh, A. Bhattacharya, A. Basuray, Quadruple-valued logic system using savart plate and spatial light modulator (SLM) and it’s applications. J. Comput. 11(4), 405–413 (2012). https://doi.org/10.1007/s10825-012-0420-0

    Article  Google Scholar 

  13. M.S. Alam, K. Jemili, M.A. Karim, Optical higher-order quaternary signed-digit arithmetic. Opt. Eng. 33, 3419–3426 (1994). https://doi.org/10.1117/12.179410

    Article  ADS  Google Scholar 

  14. A.K. Ghosh, A. Basuray, Binary to modified trinary number system conversion and vice-versa for optical super computing. Nat. Comput. 9(4), 917–934 (2010). https://doi.org/10.1007/s11047-009-9166-4

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Bhattacharya, A.K. Ghosh, G.K. Maity, Implementation of quadruple valued flip-flops using CMOS and spatial light modulator-based Savart plate. Int. J. Nanopart. 10(1/2), 141–164 (2018). https://doi.org/10.1504/IJNP.2018.092684

    Article  Google Scholar 

  16. A. Bhattacharya, A.K. Ghosh, G.K. Maity, A. Roy, CMOS based quadruple valued flip-flops. in Proceedings of the 2nd international IEEE conference on Devices for Integrated Circuit (DevIC-2017) (IEEE Explore, 2017). https://doi.org/10.1109/DEVIC.2017.8073936

    Chapter  Google Scholar 

  17. S. Das, A. Bhattacharya, A. Sarkar, S. Chandra, A.K. Ghosh, Quadruple magnitude comparator (QMC) using SLM and Savart plate. in 2020 IEEE 1st international conference for convergence in engineering (ICCE), Kolkata, India (2020), pp. 264–268. https://doi.org/10.1109/ICCE50343.2020.9290713

  18. T. Chattopadhyay, All-optical modified fredkin gate. IEEE J. Sel. Top. Quantum Electron. 18(2), 585–592 (2012). https://doi.org/10.1109/JSTQE.2011.2106111

    Article  ADS  MathSciNet  Google Scholar 

  19. A. Bhattacharya, G.K Maity, A.K. Ghosh, Optical quadruple Peres gate using SLM and Savart plate. J. Optoelectron. Adv. M. 20(1–2), 13–19 (2018). https://joam.inoe.ro/articles/optical-quadruple-peres-gate-using-slm-and-savart-plate/

  20. A. Bhattacharya, G.K. Maity, A.K. Ghosh, Optical quadruple toffoli and fredkin gate using SLM and Savart plate. in Computational Intelligence, Communications, and Business Analytics, CICBA, eds. by J. Mandal, P. Dutta, S. Mukhopadhyay (Springer, Singapore, 2017), pp. 281–295. https://doi.org/10.1007/978-981-10-6427-2_23

  21. T. Chattopadhyay, All-optical reversible network design using microring resonators. IEEE J. Quantum Electron. 51(4), 1–8 (2015). https://doi.org/10.1109/JQE.2015.2406667

    Article  Google Scholar 

  22. C. Taraphdar, T. Chattopadhyay, J.N. Roy, Mach–Zehnder interferometer-based all-optical reversible logic gate. Opt. Laser Technol. 42(2), 249–259 (2010). https://doi.org/10.1016/j.optlastec.2009.06.017

    Article  ADS  Google Scholar 

  23. A. Hati, A. Bhattacharya, S. Ray, A.K. Ghosh, Realization and implementation of optical reversible Universal Quadruple Logic Gate (ORUQLG). in 2020 IEEE 1st international conference for convergence in engineering (ICCE), Kolkata, India (2020), pp. 214–219. https://doi.org/10.1109/ICCE50343.2020.9290649.

  24. C.H. Bennett, Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973). https://doi.org/10.1147/rd.176.0525

    Article  MathSciNet  MATH  Google Scholar 

  25. G.K. Maity, S.P. Maity, Implementation of HNG using MZI. in 2012 Third International Conference on Computing, Communication and Networking Technologies (ICCCNT'12) (2012), pp. 1–6. https://doi.org/10.1109/ICCCNT.2012.6395869

  26. E. Fredkin, T. Toffoli, Conservative logic. Int J Theor Phys. 21, 219–253 (1982). https://doi.org/10.1007/BF01857727

    Article  MathSciNet  MATH  Google Scholar 

  27. T. Chattopadhyay, Negative controlled Fredkin gate circuits with mirrors. IET Quant. Commun. 3(1), 60–71 (2022). https://doi.org/10.1049/qtc2.12030

    Article  Google Scholar 

  28. S. Dey, P. De, S. Mukhopadhyay, An all-optical implementation of Fredkin gate using Kerr effect. Optoelectron. Lett. 15, 317–320 (2019). https://doi.org/10.1007/s11801-019-8170-x

    Article  ADS  Google Scholar 

  29. M.N. Sarfaraj, M. Sebait, S. Mukhopadhyay, Implementation of quantum optical tristate oscillators based on tristate Pauli-X, Y and Z gates by using joint encoding of phase and intensity. Optoelectron. Lett. 18, 673–677 (2022). https://doi.org/10.1007/s11801-022-1191-x

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are dedicating this paper to the loving memory of Prof. Amitabha Basuray.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Animesh Bhattacharya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Amitabha Basuray is deceased on 29th November, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, A., Bhattacharya, H., Nag, S. et al. Optical quadruple reversible hybrid new gate. J Opt 52, 1639–1656 (2023). https://doi.org/10.1007/s12596-023-01153-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-023-01153-6

Keywords

Navigation