Skip to main content
Log in

An alternating approach of using multi-passing technique for development of massive phase difference between two orthogonal components of light in an electro-optic Pockels cell

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Imposition on the feedback mechanism is helpful to increase the phase difference between two orthogonal components of the light wave, but in our proposed scheme we give a theoretical model in which light rays traverse a smaller amount of optical path to achieve the same amount of phase difference between them. Finally, a massive phase difference between two orthogonal components of light is created with the help of our proposed alternative scheme with an electro-optic Pockels cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Dey, S. Mukhopadhyay, A new approach of implementing phase encoded quantum SRN gate. Electron. Lett. 53, 1375 (2017)

    Article  ADS  Google Scholar 

  2. M. Mandal, S. Mukhopadhyay, Analytical investigation to achieve the highest phase difference between two orthogonal components of light in lithium niobate based electro-optic system. Optoelectron. Lett. 16, 338–342 (2020)

    Article  ADS  Google Scholar 

  3. S. Sen, S. Mukhopadhyay, A noble technique of using a specially cut LiNbO3 for achieving a greater amount phase difference between the components of light rays. Opt. Int. J. Light Electron Opt. 124(11), 1011 (2013)

    Article  Google Scholar 

  4. S. Sen, S. Mukhopadhyay, A method of using a sharp cut and pointy electro-optic material for massive reduction of Vπ voltage. Optik 126, 5256 (2015)

    Article  ADS  Google Scholar 

  5. S. Sen, S. Mukhopadhyay, A new scheme of using electro-optic crystal cut obliquely in both sides for reducing its half wave voltage. J Opt. 43, 154 (2014)

    Article  Google Scholar 

  6. S. Lakshan, S. Mukhopadhyay, Intensity and voltage controlled phase switching of light by joint effort of Kerr and Pockels material, in ICOL. ed. by K. Singh et al. (Springer, Heidelberg, 2019)

    Google Scholar 

  7. S. Lakshan, D. Saha, S. Mukhopadhyay, Optical scheme of obtaining highest transmission factor in case of KDP based electro-optic crystal by the adjustment of suitable biasing voltage and number of feedback passing. J. Opt. Commun. (2019). https://doi.org/10.1515/joc-2019-0112

    Article  Google Scholar 

  8. R. Maji, S. Mukhopadhyay, A method of reducing half wave voltage of an electro optic modulator by multi passing a light through the modulator. Optik 123, 1079 (2012)

    Article  ADS  Google Scholar 

  9. D. Samanta, S. Mukhopadhyay, A method of maintaining the intensity level of a polarization encoded light signal. J. Phys. Sci. 11, 87 (2007)

    Google Scholar 

  10. P. Mondal, H. Bhowmik, S. Mukhopadhyay, All-optical method of conducting long-distance switching by proper use of an electrooptic Pockels material and a nonlinear optical waveguide. Opt. Eng. 45, 075002 (2006)

    Article  ADS  Google Scholar 

  11. J. Liu, G. Xu, F. Liu, I. Kityk, X. Liu, Z. Zhen, Recent advances in polymer electro-optic modulators. RSC Adv. 5, 15784 (2015)

    Article  ADS  Google Scholar 

  12. A. Yariv, P. Yeh, Photonics Optical Electronics in Modern Communication (Oxford University Press, UK, 2007), p. 406

    Google Scholar 

  13. R. Siddique, S. Mukherjee, L. Mazumder, S. Mukhopadhyay, A new method of developing frequency arithmetic operation by electro-optic-modulator. Int. J. Electron. Commun. Technol. 4, 81 (2013)

    Google Scholar 

  14. A. Ghatak, K. Thayagarajan, Optical Electronics (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

  15. A. Chatterjee, S. Mukhopadhyay, A study of amplitude modulation of light beam using two pulsating electrical biasing signals, in Advances in Laser Applications and Condensed Matter Physics: Collected Contributions. ed. by S. Brown (The University of Burdwan and Levant Books, Kolkata, 2017), pp. 18–20

    Google Scholar 

  16. J.N. Roy et al., Designing of an all optical time division multiplexing scheme with the help of nonlinear material based tree-net architecture. Chin. Opt. Lett. 4, 483 (2006)

    ADS  Google Scholar 

  17. S.K. Garai et al., All optical frequency-encoded inversion operation with tristate logic using reflecting semiconductor optical amplifiers. Optik 121, 1462 (2010)

    Article  ADS  Google Scholar 

  18. R. Siddique, S. Mukhopadhyay, Sharp variation of transmission factor of KDP crystal by super-parabolic biasing voltage. J. Opt. 48, 340 (2019)

    Article  Google Scholar 

  19. M. Bass, Electro-optic modulators, In: Handbook of Optics, vol. 5 (McGraw-Hill Inc., New York, 1995)

  20. M. Jin, J.Y. Chen, Y.M. Sua, Y.P. Huang, High- extinction electro-optic modulation on lithium niobate thin film. Opt. Lett. 44, 1265 (2019)

    Article  ADS  Google Scholar 

  21. J.F. Diehl, C.E. Sunderman, J.M. Singley, V.J. Urick, K.J. Williams, Control of residual amplitude modulation in lithium niobate phase modulators. Opt. Express 25, 32985 (2017)

    Article  ADS  Google Scholar 

  22. S. Dey, A. Chatterjee, S. Mukhopadhyay, Photonics scheme for developing Manchester-coded data using laser-based Kerr switch. J. Opt (2021). https://doi.org/10.1007/s12596-021-00710-1

    Article  Google Scholar 

  23. S. Dey, S. Mukhopadhyay, A method of generation sharp peaked parabolic and hyperbolic optical passes by the use of Pockels effect for long distance communication. J. Opt. 47, 272 (2018)

    Article  Google Scholar 

  24. A. Parriaux, K. Hammani, G. Millot, Electro-optic frequency combs. Adv. Opt. Photon. 12, 223 (2020)

    Article  Google Scholar 

  25. S.H. Choi, A.J. Duzik et al., Perspective and potential of smart optical materials. Smart Mater. Struct. 26(9), 093001 (2017)

    Article  ADS  Google Scholar 

  26. W. Heni, C. Haffner, D.L. Elder et al., Nonlinearities of organic electro-optic materials in nanoscale slots and implications for the optimum modulator design. Opt. Express 25, 2627 (2017)

    Article  ADS  Google Scholar 

  27. X. Zhang, C.-J. Chung, A. Hosseini et al., high performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide. J. Light Wave Technol. 34, 2941 (2016)

    Article  ADS  Google Scholar 

  28. R. Hui, S. Taherion, Y. Wan, J. Li, S.X. Jin, J.Y. Lin, H.X. Jiang, GaN-based waveguide devices for long-wavelength optical communications. Appl. Phys. Lett. 82, 1326 (2003)

    Article  ADS  Google Scholar 

  29. D. Samanta, S. Mukhopadhyay, A new scheme of implementing all-optical logic systems exploiting material nonlinearity and polarization based encoding technique. Optoelectron. Lett. (Chin) 4, 172 (2008)

    Article  ADS  Google Scholar 

  30. R. Dubé-Demers, S. Larochelle, W. Shi, Ultrafast pulse-amplitude modulation with a femto Joule silicon photonic modulator. Optica 3, 622 (2016)

    Article  ADS  Google Scholar 

  31. B. Sarkar, S. Mukhopadhyay, Optoelectronic scheme for generation of time bound low-frequency electronic signal using multi-passing of light. J. Opt. Commun. 42(2), 375–377 (2018). https://doi.org/10.1515/joc-2018-0086

    Article  Google Scholar 

  32. D. Samanta, S. Mukhopadhyay, A method of generating single optical pulse in nanosecond range with the joint uses of electro-optic modulator and nonlinear material. Int J Light Electron Opt. 121, 1129 (2010)

    Article  Google Scholar 

  33. B. Sarkar, S. Mukhopadhyay, An all optical system for sharp increase of light frequency by the use of multiple number of LiNbo3 crystals biased by sawtooth electronic pulse. Indian J. Phys. 95(9), 1865–1869 (2020). https://doi.org/10.1007/s12648-020-01858-5

    Article  ADS  Google Scholar 

  34. M. Mandal, S. Lakshan et al., Foundation, progress and future of photonics, plasmonics and information optics, in Photonics, Plasmonics and Information Optics: Research and Technological Advances. ed. by A. Deyasi, P. Debnath, A.K. Datta, S. Bhattacharyya (CRC Press, Boca Raton, 2021)

    Google Scholar 

Download references

Acknowledgements

One of the authors acknowledges the fellowship given to him as JRF, from the Govt. of West Bengal, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suranjan Lakshan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakshan, S., Mukhopadhyay, S. An alternating approach of using multi-passing technique for development of massive phase difference between two orthogonal components of light in an electro-optic Pockels cell. J Opt 52, 317–322 (2023). https://doi.org/10.1007/s12596-022-00903-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-00903-2

Keywords

Navigation