Skip to main content
Log in

Implementation of programmable photonic one qubit quantum gates using intensity and phase encoding jointly

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Quantum computing is the latest way in super-fast data processing and computation in modern time. Quantum computers rely on qubits to process the information in the desired way. Many single qubits, two qubits and multiple qubits quantum gates are used in quantum computing. Single qubit quantum gates are already developed in different ways. Here, in the proposed study a programmable photonic scheme is established for implementing different one-qubit quantum gates using the intensity and phase encoding technique. This scheme is developed by using the lithium-niobate (LiNbO3)-based electro-optic material. Light polarized in a particular direction when passes through the electro-optic modulator with the application of the electric field then the refractive index changes with the applied biasing signal. This change in refractive index leads to generate phase modulation at the output signal. The desired phase change can be obtained by using the suitable biasing voltage across the electro-optic modulator, which is used to design the programmable system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. S. Mukhopadhyay, Role of optics in super-fast information processing. Indian J. Phys. 84, 1069–1074 (2010). https://doi.org/10.1007/s12648-010-0101-4

    Article  ADS  Google Scholar 

  2. A. Kumar, Neutral atom quantum computing: quantum gates and Maxwell’s demon (The Pennsylvania State University, 2019)

    Google Scholar 

  3. C. Gardiner, P. Zoller, The quantum world of ultra-cold atoms and light book II: the physics of quantum optical devices (Imperial College Press, 2015)

    Google Scholar 

  4. P. Böhi, R. Prevedel, T. Jennewein, A. Stefanov, F. Tiefenbacher, A. Zeilinger, Implementation and characterization of active feed-forward for deterministic linear optics quantum computing. Appl. Phys. B 89, 499–505 (2007)

    Article  ADS  Google Scholar 

  5. R. Prevedel, P. Walther, F. Tiefenbacher, P. Böhi, R. Kaltenbaek, T. Jennewein, A. Zeilinger, High-speed linear optics quantum computing using active feed-forward. Nature 445, 65–69 (2007)

    Article  ADS  Google Scholar 

  6. T.B. Pittman, B.C. Jacobs, J.D. Franson, Demonstration of feed-forward control for linear optics quantum computation. Phys. Rev. A 66, 052305 (2002)

    Article  ADS  Google Scholar 

  7. T.B. Pittman, J.D. Franson, Cyclical quantum memory for photonic qubits. Phys. Rev. A 66, 062302 (2002)

    Article  ADS  Google Scholar 

  8. M. Ricci, F. De Martini, N.J. Cerf, R. Filip, J. Fiurášek, C. Macchiavello, Experimental purification of single qubits. Phys. Rev. Lett. 93, 170501 (2004)

    Article  ADS  Google Scholar 

  9. K.A.G. Fisher, A. Broadbent, L.K. Shalm, Z. Yan, J. Lavoie, R. Prevedel, T. Jennewein, K.J. Resch, Quantum computing on encrypted data. Nat. Commun. 5, 3074 (2014). https://doi.org/10.1038/ncomms4074

    Article  ADS  Google Scholar 

  10. A. Rueda, Frequency-multiplexed hybrid optical entangled source based on the Pockels effect. Phys. Rev. A 103(2), 023708 (2021)

    Article  ADS  Google Scholar 

  11. M. Fox, Quantum optics – an introduction (Oxford University Press, New York, 2006)

    MATH  Google Scholar 

  12. A. Ghatak, K. Thyagarajan, Optical electronics (Cambridge University Press, 2002)

    Google Scholar 

  13. A. Yariv, P. Yeh, Photonics: optical Electronics in modern communications (Oxford University Press, 2007)

    Google Scholar 

  14. L.J. Wright, M. Karpiński, C. Söller, B.J. Smith, Spectral shearing of quantum light pulses by electro-optic phase modulation. Phys. Rev. Lett. 118, 023601 (2017)

    Article  ADS  Google Scholar 

  15. M. Soeken, D.M. Miller, R. Drechsler, On quantum circuits employing roots of the Pauli matrices. Phys. Rev. A 88, 042322 (2013)

    Article  ADS  Google Scholar 

  16. B. Sarkar, S. Mukhopadhyay, An all-optical scheme for implementing an integrated Pauli’s X, Y and Z quantum gates with optical switches. J. Opt. 46(2), 143–148 (2017)

    Article  Google Scholar 

  17. S. Dey, S. Mukhopadhyay, Implementation of all-optical Pauli-Y gate by the integrated phase and polarization encoding. IET Optoelectron. 12(4), 176–179 (2018)

    Article  Google Scholar 

  18. A. Tipsmark, R. Dong, A. Laghaout, P. Marek, M. Ježek, U.L. Andersen, Experimental demonstration of a Hadamard gate for coherent state qubits. Phys. Rev. A 84, 050301(R) (2011)

    Article  ADS  Google Scholar 

  19. Y. Zhang, Y. Chen, X. Chen, Polarization-based all-optical logic controlled-NOT, XOR, and XNOR gates employing electro-optic effect in periodically poled lithium niobate. Appl. Phys. Lett. 99, 161117 (2011). https://doi.org/10.1063/1.3656000

    Article  ADS  Google Scholar 

  20. S. Dey, S. Mukhopadhyay, Approach of implementing phase encoded quantum square root of NOT gate. Electron. Lett. 53(20), 1375–1377 (2017)

    Article  ADS  Google Scholar 

  21. M. Mandal, S. Mukhopadhyay, Implementation of quantum optical phase shift gate adopting multi-passing technique in lithium niobate based electro-optic crystal. ICOL-2019. Springer proceedings in physics. 258, 687–690. https://doi.org/10.1007/978-981-15-92591_158

  22. S. Dey, S. Mukhopadhyay, All-optical integrated square root of Pauli- Z (SRZ) gates using polarization and phase encoding. J. Opt. 48(4), 520–526 (2019)

    Article  Google Scholar 

  23. M. Mandal, S. Mukhopadhyay, Photonic scheme for implementing quantum square root controlled Z gate using phase and intensity encoding of light. IET Optoelectron. 15, 52–60 (2021)

    Article  Google Scholar 

  24. L. Biswal, D. Bhattacharjee, A. Chattopadhyay, H. Rahaman, Techniques for fault-tolerant decomposition of a multicontrolled Toffoli gate. Phys. Rev. A 100, 062326 (2019)

    Article  ADS  Google Scholar 

  25. M. Mičuda, M. Sedlák, I. Straka, M. Miková, M. Dušek, M. Ježek, J. Fiurášek, Efficient experimental estimation of fidelity of linear optical quantum Toffoli gate. Phys. Rev. Lett. 111, 160407 (2013)

    Article  ADS  Google Scholar 

  26. J.S. Wenzler, T. Dunn, T. Toffoli, P. Mohanty, A nanomechanical Fredkin gate. Nano Lett. 14(1), 89–93 (2014)

    Article  ADS  Google Scholar 

  27. J. O’Brien, G. Pryde, A. White et al., Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264–267 (2003). https://doi.org/10.1038/nature02054

    Article  ADS  Google Scholar 

  28. K.-H. Luo, S. Brauner, C. Eigner, P.R. Sharapova, R. Ricken, T. Meier, H. Herrmann, C. Silberhorn, Nonlinear integrated quantum electro-optic circuits. Sci. Adv. (2019). https://doi.org/10.1126/sciadv.aat1451

    Article  Google Scholar 

  29. P. Kumar, Single-qubit quantum gates using magneto-optic Kerr effect. Int. J. Nucl. Quantum Eng. 6(3), 293–296 (2012)

    MathSciNet  Google Scholar 

  30. E. Dimitriadou, K.E. Zoiros, On the design of ultrafast all-optical NOT gate using quantum-dot semiconductor optical amplifierbased Mach-Zehnder interferometer. Opt. Laser Technol. 44(3), 600–607 (2012)

    Article  ADS  Google Scholar 

  31. S. Yan, All-optical realization of X NOR logic gate using chaotic semiconductor lasers under phase modulator control. Chinese Optics Lett. 8(12), 1147–1149 (2010)

    Article  Google Scholar 

  32. A. Sinha, H. Bhowmik, P. Kuila, S. Mukhopadhyay, New method of controlling the power of a Gaussian optical pulse through an electro-optic modulator and a non-linear waveguide for generation of solitons. Opt. Eng. 44(6), 065003 (2005)

    Article  ADS  Google Scholar 

  33. S. Mukhopadhyay, D.N. Das, P.P. Das, P. Ghosh, Implementation of all-optical digital matrix multiplication scheme with nonlinear material. Opt. Eng. 40(09), 1998–2002 (2001)

    Article  ADS  Google Scholar 

  34. M. Mandal, S. Mukhopadhyay, Analytical investigation to achieve highest phase difference between two orthogonal components of light in lithium niobate based electro-optic system. Optoelectron. Lett. 16(5), 338–342 (2020)

    Article  ADS  Google Scholar 

  35. I. Goswami, M. Mandal, S. Mukhopadhyay, Alternative study of using electro-optic Pockels cell for massive reduction in the intensity of central frequency by multi-passing technique. J Optics (2021). https://doi.org/10.1007/s12596-021-00779-8

    Article  Google Scholar 

  36. M. Mandal, R. Maji, S. Mukhopadhyay, Increase of side band powers in parallel phase modulation by lithium niobate–based electro-optic crystal. Braz. J. Phys. 51, 738–745 (2021)

    Article  ADS  Google Scholar 

  37. M. Mandal, S. Mukhopadhyay, A programmable optical scheme for implementing different one qubit quantum gates using intensity and phase encoding jointly. XLIV OSI SYMPOSIUM frontiers in optics and photonics, IIT Delhi, 24–27 September, (2021)

Download references

Acknowledgements

The authors acknowledge the University Grants Commission (UGC), Govt. of India, for extending a research fellowship to Minakshi Mandal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minakshi Mandal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, M., Goswami, I. & Mukhopadhyay, S. Implementation of programmable photonic one qubit quantum gates using intensity and phase encoding jointly. J Opt 52, 145–153 (2023). https://doi.org/10.1007/s12596-022-00869-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-00869-1

Keywords

Navigation