Skip to main content
Log in

1 Gbps visible light communication system utilizing Mach–Zehnder Modulator

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Visible light communication system poses challenges in the modulation schemes, in particularly relating to the flickering and dimming support which limits its data rate and real-time practical implementation. This article has proposed MZM devices which work on visible wavelengths, 520 and 530 nm, with improved performance characteristics as ER 36.9337 dB & 36.9183 dB, respectively, and IL 0.056 dB and 0.0714 dB, respectively. The proposed devices have also been analyzed in an indoor environment working on 1 Gbps at \(10^{-5}\) to \(10^{-4}\) BER range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.A. Khalighi, M. Uysal, Survey on free space optical communication: a communication theory perspective. IEEE Commun. Surv. Tutor. 16(4), 2231–2258 (2014). https://doi.org/10.1109/COMST.2014.2329501

    Article  Google Scholar 

  2. S.U. Rehman, S. Ullah, P.H.J. Chong, S. Yongchareon, D. Komosny, Visible light communication: a system perspective-overview and challenges. Sensors 19(5), 1153 (2019)

    Article  ADS  Google Scholar 

  3. L.E.M. Matheus, A.B. Vieira, L.F.M. Vieira, M.A.M. Vieira, O. Gnawali, Visible light communication: concepts, applications and challenges. IEEE Commun. Surv. Tutor. 21(4), 3204–3237 (2019). https://doi.org/10.1109/COMST.2019.2913348

    Article  Google Scholar 

  4. T. Komine, M. Nakagawa, Fundamental analysis for visible-light communication system using led lights. IEEE Trans. Consum. Electron. 50(1), 100–107 (2004). https://doi.org/10.1109/TCE.2004.1277847

    Article  Google Scholar 

  5. J. Grubor, O. Jamett, W. Joachim, S. Randel, K.-D. Langer, High-speed wireless indoor communication via visible light (2007)

  6. L.U. Khan, Visible light communication: applications, architecture, standardization and research challenges. Digital Commun. Netw. 3(2), 78–88 (2017). https://doi.org/10.1016/j.dcan.2016.07.004

    Article  Google Scholar 

  7. F. Ahmed, S. Ali, M. Jawaid, A review of modulation schemes for visible light communication. Int. J. Comput. Sci. Netw. Secur. 18, 117–125 (2018)

    Google Scholar 

  8. A. Aliaberi, P.C. Sofotasios, S. Muhaidat, Modulation schemes for visible light communications, in 2019 International Conference on Advanced Communication Technologies and Networking (CommNet), pp. 1–10 (2019). https://doi.org/10.1109/COMMNET.2019.8742376

  9. S. Rajagopal, R.D. Roberts, S. Lim, Ieee 802.15.7 visible light communication: modulation schemes and dimming support. IEEE Commun. Mag. 50(3), 72–82 (2012). https://doi.org/10.1109/MCOM.2012.6163585

    Article  Google Scholar 

  10. A. Anusree, R.K. Jeyachitra, Performance analysis of a mimo vlc (visible light communication) using different equalizers, in 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), pp. 43–46 (2016). https://doi.org/10.1109/WiSPNET.2016.7566085

  11. A. Sewaiwar, Y.-H. Chung, High-performance TDM-MIMO-VLC Using RGB LEDs in indoor multiuser environments. Curr. Opt. Photon. 1(4), 289–294 (2017)

    Google Scholar 

  12. A.H. Azhar, T. Tran, D. O’Brien, A gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications. IEEE Photonics Technol. Lett. 25(2), 171–174 (2013). https://doi.org/10.1109/LPT.2012.2231857

    Article  ADS  Google Scholar 

  13. Y. Zhang, L. Wang, K. Wang, K.S. Wong, K. Wu, Recent advances in the hardware of visible light communication. IEEE Access 7, 91093–91104 (2019). https://doi.org/10.1109/ACCESS.2019.2927054

    Article  Google Scholar 

  14. M. Rahman, A.S.M. Bakibillah, R. Parthiban, M. Bakaul, Review of advanced techniques for multi-gigabit visible light communication. IET Optoelectron. (2020). https://doi.org/10.1049/iet-opt.2019.0120

    Article  Google Scholar 

  15. D.M. Boroson, B.S. Robinson, D.A. Burianek, D.V. Murphy, A. Biswas, Overview and status of the Lunar Laser Communications Demonstration, vol 8246, pp. 69–78. SPIE, (2012). https://doi.org/10.1117/12.914801

  16. P. Hu, P. Pathak, A. Das, Z. Yang, P. Mohapatra, Plifi: hybrid wifi-vlc networking using power lines, pp. 31–36 (2016). https://doi.org/10.1145/2981548.2981549

  17. M. Akanegawa, Y. Tanaka, M. Nakagawa, Basic study on traffic information system using led traffic lights. IEEE Trans. Intell. Transp. Syst. 2(4), 197–203 (2001). https://doi.org/10.1109/6979.969365

    Article  Google Scholar 

  18. I. Takai, T. Harada, M. Andoh, K. Yasutomi, K. Kagawa, S. Kawahito, Optical vehicle-to-vehicle communication system using led transmitter and camera receiver. IEEE Photonics J. 6(5), 1–14 (2014). https://doi.org/10.1109/JPHOT.2014.2352620

    Article  Google Scholar 

  19. N. Kumar, D. Terra, N. Lourenço, L. Nero Alves, R.L. Aguiar, Visible light communication for intelligent transportation in road safety applications, in 2011 7th International Wireless Communications and Mobile Computing Conference, pp. 1513–1518 (2011). https://doi.org/10.1109/IWCMC.2011.5982762

  20. M. Uysal, Z. Ghassemlooy, A. Bekkali, A. Kadri, H. Menouar, Visible light communication for vehicular networking: performance study of a v2v system using a measured headlamp beam pattern model. IEEE Veh. Technol. Mag. 10(4), 45–53 (2015). https://doi.org/10.1109/MVT.2015.2481561

    Article  Google Scholar 

  21. Y. Qiu, H.-H. Chen, W.-X. Meng, Channel modeling for visible light communications-a survey. Wireless Commun. Mobile Comput. 16(14), 2016–2034 (2016). https://doi.org/10.1002/wcm.2665

    Article  Google Scholar 

  22. A. Moreira, R. Valadas, A.M. De Oliveira Duarte, Optical interference produced by artificial light. Wireless Netw. 3, 131–140 (1997). https://doi.org/10.1023/A:1019140814049

    Article  Google Scholar 

  23. S.H. Lee, S. Jung, J.K. Kwon, Modulation and coding for dimmable visible light communication. IEEE Commun. Mag. 53(2), 136–143 (2015). https://doi.org/10.1109/MCOM.2015.7045402

    Article  Google Scholar 

  24. F. Zafar, D. Karunatilaka, R. Parthiban, Dimming schemes for visible light communication: the state of research. IEEE Wireless Commun. 22(2), 29–35 (2015). https://doi.org/10.1109/MWC.2015.7096282

    Article  Google Scholar 

  25. E.L. Wooten, K.M. Kissa, A. Yi-yan, E.J. Murphy, D.A. Lafaw, P.F. Hallemeier, D. Maack, D.V. Attanasio, D.J. Fritz, G. Mcbrien, D.E. Bossi, A review of lithium niobate modulators for fiber-optic communications systems. Sel. Top. Quantum Electron. IEEE J. 6, 69–82 (2000). https://doi.org/10.1109/2944.826874

    Article  ADS  Google Scholar 

  26. A. Rao, S. Fathpour, Compact lithium niobate electrooptic modulators. IEEE J. Sel. Top. Quantum Electron. 24(4), 1–14 (2018). https://doi.org/10.1109/JSTQE.2017.2779869

    Article  Google Scholar 

  27. L.N. Binh, Lithium niobate optical modulators: devices and applications. J. Crystal Growth 288(1), 180–187 (2006). https://doi.org/10.1016/j.jcrysgro.2005.12.020

    Article  ADS  Google Scholar 

  28. A.J. Mercante, S. Shi, P. Yao, L. Xie, R.M. Weikle, D.W. Prather, Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth. Opt. Express 26(11), 14810–14816 (2018). https://doi.org/10.1364/OE.26.014810

    Article  ADS  Google Scholar 

  29. C. Wang, M. Zhang, B. Stern, M. Lipson, M. Lončar, Nanophotonic lithium niobate electro-optic modulators. Opt. Express 26(2), 1547–1555 (2018). https://doi.org/10.1364/OE.26.001547

    Article  ADS  Google Scholar 

  30. G. Singh, R. Yadav, V. Janyani, A. Ray, Design of 2x2 optoelectronic switch based on MZI and study the effect of electrode switching voltages. J. World Acad Sci. Eng. Technol. 39, 401–407 (2008)

    Google Scholar 

  31. N. Mohammed, Performance evaluation and enhancement of \(2 \times 2\) ti: Linbo3 Mach Zehnder interferometer switch at 1.3 \(\upmu m\) and 1.55 \(\upmu m\). Open Electr. Electron. Eng. J. 6, 36–49 (2012). https://doi.org/10.2174/1874129001206010036

    Article  Google Scholar 

  32. K. Okamoto, Chapter 4–coupled mode theory, in Fundamentals of Optical Waveguides (Second Edition), 2nd edn., ed. by K. Okamoto (Academic Press, Burlington, 2006), pp. 159–207. https://doi.org/10.1016/B978-012525096-2/50005-2

    Chapter  Google Scholar 

  33. M.S.A. Rahman, K.M., Shaktur, R. Mohammad, Analytical and simulation of new electro-optic 3\(\times\)3 switch using ti:linbo3 as a wave guide medium, in International Conference On Photonics 2010, pp. 1–5 (2010). https://doi.org/10.1109/ICP.2010.5604426

  34. R.K.M. Poonam Devi, Modeling of lithium niobate based Mach–Zehnder modulator for visible light communication system with BER analysis. Opt. Quantum Electron. 53(6), 15 (2021). https://doi.org/10.1007/s11082-021-02999-5

    Article  Google Scholar 

  35. T. Menegotto, T. Ferreira da Silva, M. Simões, W.A.T. de Sousa, G. Borghi, Realization of optical power scale based on cryogenic radiometry and trap detectors. IEEE Trans. Instrum. Meas. 64(6), 1702–1708 (2015). https://doi.org/10.1109/TIM.2014.2383072

    Article  ADS  Google Scholar 

  36. S. Fuada, A.P. Putra, T. Adiono, Analysis of received power characteristics of commercial photodiodes in indoor los channel visible light communication. Int. J. Adv. Comput. Sci. Appl. (2017). https://doi.org/10.14569/IJACSA.2017.080722

    Article  Google Scholar 

  37. A. Riaz, S. Collins, A slab fluorescent concentrator for visible light communications, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM), pp. 1–4 (2019). https://doi.org/10.1109/MENACOMM46666.2019.8988526

  38. X. Liu, Z. Chen, Y. Wang, F. Zhou, Y. Luo, R.Q. Hu, Ber analysis of noma-enabled visible light communication systems with different modulations. IEEE Trans. Veh. Technol. 68(11), 10807–10821 (2019). https://doi.org/10.1109/TVT.2019.2938909

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poonam Devi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, P., Maddila, R.K. 1 Gbps visible light communication system utilizing Mach–Zehnder Modulator. J Opt 52, 406–416 (2023). https://doi.org/10.1007/s12596-022-00863-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-00863-7

Keywords

Navigation