Skip to main content
Log in

Bi-core photonic crystal fiber for blood component detection

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

A novel Bi-Core Photonic Crystal Fiber (BC-PCF) is presented to sense and detect foremost blood constituents. Solid core is opted for the presented sensor owing to its special feature in allowing light of all wavelength. As blood is a vital fluid in human body, recognition of blood components is highly necessary. Here, five major components of blood to be detected from sample analyte are considered as red blood cells, hemoglobin, white blood cells, water and plasma. Coupling mode theory is used and the shift in transmission power spectrum is observed which assists in blood component detection. The optical study along with PCF characteristic analysis is done by using finite element method. Presented BC-PCF sensor reveals superior sensitivity of 6680 nm/RIU for x-polarization and 6930 nm/RIU for y-polarization with less coupling length in millimeter range. This simple designed sensor providing superior sensitivity with low coupling length paves way for various applications in biomedical field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. I. Sassi, N. Belacel, Y. Bouslimani et al. Multicriteria PCF design: an accurate photonic crystal fiber design tool. In 2009 Seventh Annual Communication Networks and Services Research Conference IEEE, 252–256, (2009)

  2. F. ISLAM, Analysis of Hexagonal and Spiral Lattice Photonic Crystal Fibers using Finite Element Method. Bangladesh University of Engineering and Technology, (2013)

  3. MS Khan K Ahmed MN Hossain BK Paul TK Nguyen V Dhasarathan 2020 Exploring refractive index sensor using gold coated D-shaped photonic crystal fiber for biosensing applications Optik 202 163649

    Article  ADS  Google Scholar 

  4. N Luan L Zhao Y Lian 2018 A high refractive index plasmonic sensor based on D-shaped photonic crystal fiber with laterally accessible hollow-core IEEE Photonics J. 10 5 1 7

    Article  Google Scholar 

  5. K. Ahmed, S. Asaduzzaman, F.H. Arif, Numerical analysis of O-PCF structure for sensing applications with high relative sensitivity. In 2015 2nd International Conference on Electrical Information and Communication Technologies (EICT) IEEE, pp. 254–258, (2015)

  6. SA Mitu DK Dey K Ahmed BK Paul Y Luo R Zakaria V Dhasarathan 2020 Fe3O4 nanofluid injected photonic crystal fiber for magnetic field sensing applications J. Magnet. Magnet. Mater. 494 165831

    Article  Google Scholar 

  7. S Akter K Ahmed SA El-Naggar SA Taya TK Nguyen V Dhasarathan 2020 Highly sensitive refractive index sensor for temperature and salinity measurement of seawater Optik 216 164901

    Article  ADS  Google Scholar 

  8. N Ayyanar D Vigneswaran M Sharma M Sumathi MS Mani Rajan S Konar 2016 Hydrostatic pressure sensor using high birefringence photonic crystal fibers IEEE Sens. J. 17 3 650 656

    Article  ADS  Google Scholar 

  9. M Jabin K Ahmed M Rana BK Paul Y Luo D Vigneswaran 2019 Titanium-coated dual-core D-shaped SPR-based PCF for hemoglobin sensing Plasmonics 14 6 1601 1610

    Article  Google Scholar 

  10. K Ahmed BK Paul B Vasudevan ANZ Rashed R Maheswar IS Amiri P Yupapin 2019 Design of D-shaped elliptical core photonic crystal fiber for blood plasma cell sensing application Res. Phys. 12 2021 2025

    Google Scholar 

  11. T Parvin K Ahmed AM Alatwi ANZ Rashed 2021 Differential optical absorption spectroscopy-based refractive index sensor for cancer cell detection Opt. Rev. 28 1 134 143

    Article  Google Scholar 

  12. M Mollah RJ Usha S Tasnim K Ahmed 2020 Detection of cancer affected cell using Sagnac interferometer based photonic crystal fiber refractive index sensor Opt. Quant. Electron. 52 9 1 12

    Article  Google Scholar 

  13. MA Jabin Y Luo GD Peng MJ Rana K Ahmed TK Nguyen BK Paul V Dhasarathan 2020 Design and fabrication of amoeba faced photonic crystal fiber for biosensing application Sens. Actuat. A Phys. 313 112204

    Article  Google Scholar 

  14. SA Mitu K Ahmed FA Al Zahrani A Grover MSM Rajan MA Moni 2021 Development and analysis of surface plasmon resonance based refractive index sensor for pregnancy testing Opt. Lasers Eng. 140 106551

    Article  Google Scholar 

  15. A.A. Rifat, K. Ahmed, S. Asaduzzaman, B.K. Paul, R. Ahmed. "Development of photonic crystal fiber-based gas/chemical sensors." In Computational photonic sensors, pp. 287–317. Springer, Cham, (2019)

  16. K Ahmed F Ahmed S Roy 2019 Refractive index-based blood components sensing in terahertz spectrum IEEE Sens. J. 19 9 3368 3375

    Article  ADS  Google Scholar 

  17. H Chopra RS Kaler B Painam 2016 Photonic crystal waveguide-based biosensor for detection of diseases J. Nanophotonics 10 3 036011

    Article  ADS  Google Scholar 

  18. P Sharma P Sharan 2015 Design of photonic crystal based ring resonator for detection of different blood constituents Opt. Commun. 348 19 23

    Article  ADS  Google Scholar 

  19. M Friebel MC Meinke 2005 Determination of the complex refractive index of highly concentrated hemoglobin solutions using transmittance and reflectance measurements J. Biomed. Opt. 10 6 064019

    Article  ADS  Google Scholar 

  20. E Podder MB Hossain ME Rahaman 2020 Design and optimization of terahertz blood components sensor using photonic crystal fiber Sens. Bio-Sens. Res. 30 100386

    Article  Google Scholar 

  21. MS Islam BK Paul K Ahmed 2018 Liquid-infiltrated photonic crystal fiber for sensing purpose: design and analysis Alex. Eng. J. 57 3 1459 1466

    Article  Google Scholar 

  22. S Sen S Chowdhury K Ahmed 2017 Design of a porous cored hexagonal photonic crystal fiber based optical sensor with high relative sensitivity for lower operating wavelength Photonic Sens. 7 1 55 65

    Article  ADS  Google Scholar 

  23. V Kaur S Singh 2019 Design approach of solid-core photonic crystal fiber sensor with sensing ring for blood component detection J. Nanophotonics 13 2 026011

    Article  ADS  Google Scholar 

  24. MB Hossain E Podder 2019 Design and investigation of PCF-based blood components sensor in terahertz regime Appl. Phys. A 125 12 1 8

    Article  Google Scholar 

  25. D Vijayalakshmi CT Manimegalai N Ayyanar K Kalimuthu 2021 High amplitude sensitivity Gold-coated trichannel photonic crystal fibre for refractive index sensor IET Optoelectron. 15 1 9

    Google Scholar 

  26. R.T. Bise, D. Trevor, JSol-gel derived microstructured fiber: fabrication and characterization. In Optical Fiber Communication Conference, Optical Society of America, p. OWL6 . (2005)

  27. AM Cubillas S Unterkofler TG Euser 2013 Photonic crystal fibres for chemical sensing and photochemistry Chem. Soc. Rev. 42 22 8629 8648

    Article  Google Scholar 

  28. H Ebendorff-Heidepriem J Schuppich A Dowler 2014 3D-printed extrusion dies: a versatile approach to optical material processing Opt. Mater. Express 4 8 1494 1504

    Article  ADS  Google Scholar 

  29. A Ghazanfari W Li MC Leu 2017 A novel freeform extrusion fabrication process for producing solid ceramic components with uniform layered radiation drying Addit. Manuf. 15 102 112

    Google Scholar 

  30. MR Hasan S Akter AA Rifat 2017 Spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor IEEE Sens. J. 18 1 133 140

    Article  ADS  Google Scholar 

  31. D Vijayalakshmi CT Manimegalai N Ayyanar D Vigneswaran K Kalimuthu 2021 Detection of blood glucose with hemoglobin content using compact photonic crystal fiber IEEE Trans. NanoBiosci. 20 4 436 443

    Article  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

DV and PS have involved for optimization of proposed work, simulation results analysis and writing manuscript. C.T.M has involved for result evaluation and supervision.

Corresponding author

Correspondence to Dhinakaran Vijayalakshmi.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayalakshmi, D., Manimegalai, C.T. & Selvakumar, P. Bi-core photonic crystal fiber for blood component detection. J Opt 52, 42–49 (2023). https://doi.org/10.1007/s12596-022-00848-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-00848-6

Keywords

Navigation