Skip to main content
Log in

Decagonal solid core PCF based refractive index sensor for blood cells detection in terahertz regime

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The fast and accurate detection of the blood components is very necessary before initiating the treatment of patients. In this article, a decagonal Solid Core Photonic Crystal Fiber (SC-PCF) sensor with very high sensitivity and low confinement loss for efficiently detecting the blood cells is proposed. The solid core with air hole ring gives an extra edge for sensing the biomedical analytes due to the easy infiltration of liquid in the holes of the core. The material used in the background of the PCF is TOPAS. A Perfectly Matched Layer (PML) is used as boundary condition in outer layer of cladding. The Full-Vectorial Finite Element Method (FV-FEM) is used for solving the Maxwell equation and numerical analysis of the model in the THz regime. In results, the highest sensitivity in the terahertz spectrum for glucose, plasma, WBC and RBC are 84.55%, 85.09%, 85.62% and 87.68% respectively. Specifically, more than 85.09% sensitivity for all the blood components makes this sensor very useful for rapid blood sensing. This paper also analyzes the low confinement loss (CL), high effective mode area, low birefringence and beat length at operating frequency in the terahertz spectrum (1THz–4THz) for all the blood components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdur Razzak, S.M., Namihira, Y., Khan, A.G., Begum, F., Kaijage, S.: Guiding properties of a decagonal photonic crystal fiber. J. Microw. Optoelectron. Electromagn. Appl. 6(1), 44–49 (2007)

    Google Scholar 

  • Ademgil, H.: Highly sensitive octagonal photonic crystal fiber-based sensor. Optik 125(20), 6274–6278 (2014)

    Article  ADS  Google Scholar 

  • Ademgil, H., Haxha, S.: PCF based sensor with high sensitivity, high birefringence and low confinement losses for liquid analyte sensing applications. Sensors 15(12), 31833–31842 (2015)

    Article  Google Scholar 

  • Ahmed, K., Ahmed, F., Roy, S., Paul, B.K., Aktar, M.N., Vigneswaran, D.: Refractive Index Based Blood Components Sensing in Terahertz Spectrum. IEEE Sensor Journal 19(9), 3368–3375 (2019)

    Article  ADS  Google Scholar 

  • Al-Mamun Bulbul, A., Imam, F., Awal, M.A., Parvez Mahmud, M.A.: A novel ultra-low loss rectangle-based porous-core PCF for efficient THz waveguidance: design and numerical analysis. Sensors 20, 6500 (2020)

    Article  Google Scholar 

  • Aoni, R.A., Ahmed, R., Alam, M.M., Razzak, S.A.: Optimum design of a nearly zero ultra-flattened dispersion with lower confinement loss photonic crystal fibers for communication systems. Int. J. Sci. Eng. Res. 4, 1–4 (2013)

    Google Scholar 

  • Awadah, N., Binti, N., Kabir, S.I., Emeroylariffion, Y., Kaijage, A.S., Begum, F.: Modelling and simulation of novel liquid-infiltrated PCF biosensor in Terahertz frequencies. IET Optoelectron 14, 411–416 (2020)

    Article  Google Scholar 

  • Bise, R.T., Trevor, D.J.: Sol–gel derived microstructured fiber: fabrication and characterization, In Tech. Dig. Opt. Fiber Commun. Conf. (OFC/NFOEC), p. 3 (2005)

  • Biswas, B., Ahmed, K., Paul, B.K., Khalek, M.A., Uddin, M.S.: Numerical evaluation of the performance of different materials in nonlinear optical applications. Results Phys., 2211–3797, Published by Elsevier (2019)

  • Chaudhary, V.S., Kumar, D.: TOPAS based porous core photonic crystal fiber for terahertz chemical sensor. Optik 223, 165562 (2020)

    Article  ADS  Google Scholar 

  • Cheng, R., Xu, L., Yu, X., Zou, L., Shen, Y., Deng, X.: High-sensitivity biosensor for identification of protein based on terahertz Fano resonance metasurfaces. Opt. Commun. 473, 125850 (2020)

    Article  Google Scholar 

  • Chopra, H., Kaler, R.S., Painam, B.: Photonic crystal waveguide-based biosensor for detection of diseases. J. Nanophotonics 10(3), 036011 (2016)

    Article  ADS  Google Scholar 

  • De, M., Gangwar, R.K., Singh, V.K.: Designing of highly birefringence, dispersion shifted decagonal photonic crystal fiber with low confinement loss. Photonics Nanostruct. Fundam. Appl. 26, 15–23 (2017)

    Article  ADS  Google Scholar 

  • Ebendorff-Heidepriem, H., Schuppich, J., Dowler, A., Lima-Marques, L., Monro, T.M.: 3D-printed extrusion dies: a versatile approach to optical material processing. Opt. Mater. Exp. 4(8), 1494–1504 (2014)

    Article  ADS  Google Scholar 

  • Fischer, B.M., Walther, M., Jepsen, P.U.: Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy. Phys. Med. Biol. 47(21), 3807–3814 (2002)

    Article  Google Scholar 

  • Ghazanfari, A., Li, W., Leu, M.C., Hilmas, G.E.: A novel freeform extrusion fabrication process for producing solid ceramic components with uniform layered radiation drying. Addit. Manuf. 15, 102–112 (2017)

    Google Scholar 

  • Hou, Y., Fan, F., Jiang, Z.-W., Wang, X.-H., Chang, S.-J.: Highly birefringent polymer terahertz fiber with honeycomb cladding. Optik 124(17), 3095–3098 (2013)

    Article  ADS  Google Scholar 

  • Jin, Y.L., Chen, J.Y., Xu, L., Wang, P.N.: Refractive index measurement for biomaterial samples by total internal reflection. Phys. Med. Biol. 51, N371–N379 (2006)

    Article  Google Scholar 

  • Kaur, V., Singh, S.: Design approach of solid-core photonic crystal fiber sensor with sensing ring for blood component detection. J. Nanophoton. 13(2), 026011 (2019)

    Article  ADS  Google Scholar 

  • Knight, J.C.: Photonic crystal fiber. Nature 424, 847–851 (2003)

    Article  ADS  Google Scholar 

  • Knight, J.C., Birks, T.A., Russell, P.S.J., Atkin, D.M.: All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21(19), 1547–1549 (1996)

    Article  ADS  Google Scholar 

  • Li, W., Cheng, H., Xia, M., Yang, K.: An experimental study of pH optical sensor using a section of no-core fiber. Sens. Actuat. A 199, 260–264 (2013)

    Article  Google Scholar 

  • Liu, Y., Salemink, H.: All-optical on-chip sensor for high refractive index sensing in photonic crystals. EPL (Europhys. Lett.) 107, 34008 (2014)

    Article  ADS  Google Scholar 

  • Luo, B., Yan, Z., Sun, Z., Li, J., Zhang, L.: Novel glucose sensor based on enzyme-immobilized 81 tilted fiber grating. Opt. Express 22, 30571–30578 (2014)

    Article  ADS  Google Scholar 

  • Mobasser, S., Khanjari, S.P., Bazgir, M., Zarrabi, F.B.: Highly sensitive reconfigurable plasmonic metasurface with dual-band response for optical sensing and switching in the mid-infrared spectrum. J. Electron. Mater. 50, 120–128 (2020)

    Article  ADS  Google Scholar 

  • Natesan, A., Govindasamy, K.P., Raja, G.T., Dhasarathan, V., Aly, A.H.: Tricore photonic crystal fibre based refractive index sensor for glucose detection. IET Optoelectron. 13(3), 118–123 (2019)

    Article  Google Scholar 

  • Obayya, S., Hameed, M.F.O., Areed, N.F.F.: Computational Liquid Crystal Photonics Fundamentals Modelling and Applications. Wiley, Chichester (2016)

    Google Scholar 

  • Paul, B.K., Ahmed, K., Vigneswaran, D., Ahmed, F., Roy, S., Abbott, D. (2018) Quasi photonic crystal fiber based spectroscopic chemical sensor in the terahertz spectrum: design and analysis, IEEE Sens. J., 1558–1748 (2018)

  • Podder, E., Jibon, R.H., Kabir, M.A.: Alcohol sensing through photonic crystal fiber at different temperature. Optic Photonic J. 08(10), 309–216 (2018)

    Article  ADS  Google Scholar 

  • Prabhakar, G.: Finite Element Analysis of Solid-Core Photonic Crystal Fiber, IEEE, (2012)

  • Rahman, A., Rahman, A.K., Rao, B.: Early detection of skin cancer via terahertz spectral profiling and 3D imaging. Biosens. Bioelectron. 82(15), 64–70 (2013)

    Google Scholar 

  • Sen, S., Abdullah-Al-Shafi, M., Kabir, M.A.: Hexagonal photonic crystal Fiber (H-PCF) based optical sensor with high relative sensitivity and low confinement loss for terahertz (THz) regime. Sensing and Bio-Sensing Research 30, 100377 (2020)

    Article  Google Scholar 

  • Sharma, P., Sharan, P.: Design of photonic crystal-based ring resonator for detection of different blood constituents. Opt. Commun. 348, 19–23 (2015)

    Article  ADS  Google Scholar 

  • Soylemez, S., Udum, Y.A., Kesik, M., Hızlıateş, C.G., Ergun, Y., Toppare, L.: Electrochemical and optical properties of a conducting polymer and its use in a novel biosensor for the detection of cholesterol. Sens. Actuators B Chem. 212, 425–433 (2015)

    Article  Google Scholar 

  • Sun, D., Guo, T., Ran, Y., Huang, Y., Guan, B.-O.: In-situ DNA hybridization detection with a reflective microfiber grating biosensor. Biosens. Bioelectron. 61, 541–546 (2014)

    Article  Google Scholar 

  • Vigneswaran, D., Ayyanar, N., Sharma, M., Sumathi, M., Rajan, M., Porsezian, K.: Salinity sensor using photonic crystal fiber. Sens. Act. A Phys. 269, 22–28 (2018)

    Article  Google Scholar 

  • Xin, L., Ying, L., Guo, X.: Modular interference characteristics and beat length of a two-hole photonic crystal fiber. International Symposiumon Optoelectronic Technology and Application, pp. 101550T-101550T-7, (2016)

  • Zhang, T., Zheng, Y., Wang, C., Mu, Z., Liu, Y., Lin, J.: A review of photonic crystal fiber sensor applications for different physical quantities. Appl. Spectrosc. Rev. Taylor Francis 53(6), 486–502 (2017)

    Article  ADS  Google Scholar 

  • Zhao, C.-L., Wang, D.N., Xiao, L.: Filling technology of PCFs and their applications. In: Peng, G.-D. (ed.) Handbook of Optical Fibers, pp. 1–62. Springer, Singapore (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Verma, P. & Jindal, P. Decagonal solid core PCF based refractive index sensor for blood cells detection in terahertz regime. Opt Quant Electron 53, 165 (2021). https://doi.org/10.1007/s11082-021-02818-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-02818-x

Keywords

Navigation