Skip to main content
Log in

Relativistic self-focusing of finite Airy-Gaussian laser beams in cold quantum plasma

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In the present theoretical investigation, the phenomenon of relativistic self-focusing of finite Airy-Gaussian (AiG) laser beams in cold quantum plasma has been explored under standard Wentzel–Kramers–Brillouin (WKB) and paraxial approximations. It is worth and interesting to note at the beginning that AiG laser beams are invariant under paraxial transformation. Thus, the paraxial approximation adopted herein is naturally justified. The added interest to investigate finite AiG laser beams is due to their unique features of propagation. This leads them to be potential candidate beams to travel several Rayleigh lengths through plasma. Based on these vital characteristic, it would be interesting to study the propagation dynamics of finite AiG laser beams in cold quantum plasma. At the end, the effect of modulation parameter, critical initial beam radius and critical intensity parameter on the phenomenon of self-focusing is studied. The results are presented graphically and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. F. Haas, Quantum Plasmas: An Hydrodynamic Approach (Springer, New York, 2011)

    Google Scholar 

  2. P.K. Shukla, B. Eliasson, Nonlinear aspects of quantum plasma physics. Phys-Usp 53, 51–76 (2010)

    ADS  Google Scholar 

  3. L.D. Landau, E.M. Lifshitz, Statistical Physics (Butterworth-Heinemann, Oxford, 1980)

    Google Scholar 

  4. G. Manfredi, How to model quantum plasmas. Fields Inst. Commun. 46, 263 (2005)

    MathSciNet  Google Scholar 

  5. A.A. Bulgakov, O.V. Shramkova, Nonlinear interaction of waves in semiconductor plasma. J. Phys. D. Appl. Phys. 40, 5896 (2007)

    ADS  Google Scholar 

  6. Y.-D. Jung, I. Murakami, Quantum effects on magnetization due to ponderomotive force in cold quantum plasmas. Phys. Lett. A 373, 969–971 (2009)

    ADS  Google Scholar 

  7. B. Eliasson, P.K. Shukla, Nonlinear relativistic interactions between electromagnetic waves and quantum plasmas. AIP Conf. Proc. 1421, 177–192 (2012)

    ADS  Google Scholar 

  8. N. Gupta, A. Singh, Second harmonic generation of self-focused cosh-Gaussian laser beam in thermal quantum plasma by excitation of an electron plasma wave. Contrib. Plasma Phys. 56, 889–904 (2016)

    ADS  Google Scholar 

  9. S.A. Akhmanov, A.P. Sukhorukov, R.V. Khokhlov, Self-focusing and diffraction of light in a nonlinear medium. Sov. Phys. JETP 10, 609–636 (1968)

    Google Scholar 

  10. T. Hauser, W. Scheid, H. Hora, Analytical calculation of relativistic self-focusing length in the WKB approximation. J. Opt. Soc. Am. B 5, 2029–2034 (1988)

    ADS  Google Scholar 

  11. S.D. Patil, M.V. Takale, S.T. Navare, V.J. Fulari, M.B. Dongare, Analytical study of HChG-laser beam propagation in collisional and collisionless plasmas. J. Opt. 36, 136–144 (2007)

    Google Scholar 

  12. M.A. Wani, N. Kant, Nonlinear propagation of Gaussian laser beam in an inhomogeneous plasma under plasma density ramp. Optik 127, 6710–6714 (2016)

    ADS  Google Scholar 

  13. K.I. Hasson, A.K. Sharma, R.A. Khamis, Relativistic laser self-focusing in a plasma with transverse magnetic field. Phys. Scr. 81, 025505 (2010)

    ADS  Google Scholar 

  14. S.D. Patil, M.V. Takale, V.J. Fulari, D.N. Gupta, H. Suk, Combined effect of ponderomotive and relativistic self-focusing on laser beam propagation in a plasma. Appl. Phys. B 111, 1–6 (2013)

    ADS  Google Scholar 

  15. S.D. Patil, P.P. Chikode, M.V. Takale, Turning point temperature of self-focusing at laser-plasma interaction with weak-relativistic-ponderomotive nonlinearity: effect of light absorption. J. Opt. 47, 174–179 (2018)

    Google Scholar 

  16. T.S. Gill, R. Mahajan, R. Kaur, S. Gupta, Relativistic self-focusing of super-Gaussian laser beam in plasma with transverse magnetic field. Laser Part. Beams 30, 509–5016 (2012)

    ADS  Google Scholar 

  17. T.S. Gill, R. Mahajan, Self-focusing of super-Gaussian laser beam in magnetized plasma under relativistic and ponderomotive regime. Optik 126, 1683–1690 (2015)

    ADS  Google Scholar 

  18. B.D. Vhanmore, S.D. Patil, A.T. Valkunde, T.U. Urunkar, K.M. Gavade, M.V. Takale, Self-focusing of asymmetric cosh-Gaussian laser beams propagating through collisionless magnetized plasma. Laser Part. Beams 35, 670 (2017)

    ADS  Google Scholar 

  19. B.D. Vhanmore, A.T. Valkunde, T.U. Urunkar, K.M. Gavade, S.D. Patil, M.V. Takale, Effect of decentred parameter on self-focusing in the interaction of cosh-Gaussian laser beams with collisionless magnetized plasma. AIP Conf Proc. 1953, 140047 (2018)

    Google Scholar 

  20. P. Sharma, Self-focusing of Hermite-Gaussian laser beam with relativistic nonlinearity. AIP Conf. Proc. 1670, 030029 (2015)

    Google Scholar 

  21. V. Sharma, V. Thakur, N. Kant, Self-focusing of Hermite-Gaussian laser beam in plasma in relativistic and ponderomotive regime. AIP Conf. Proc. 2136, 060017 (2019)

    Google Scholar 

  22. B.D. Vhanmore, S.D. Patil, A.T. Valkunde, T.U. Urunkar, K.M. Gavade, M.V. Takale, D.N. Gupta, Effect of q-parameter on relativistic self-focusing of q-Gaussian laser beam in plasma. Optik 158, 574–579 (2018)

    ADS  Google Scholar 

  23. R. Kashyap, M. Aggarwal, T.S. Gill, N.S. Arora, H. Kumar, D. Moudhgill, Self-focusing of q-Gaussian laser beam in relativistic plasma under the effect of light absorption. Optik 182, 1030–1038 (2019)

    ADS  Google Scholar 

  24. A. Singh, M. Aggarwal, T.S. Gill, Optical guiding of elliptical laser beam in nonuniform plasma. Optik 119, 559–564 (2008)

    ADS  Google Scholar 

  25. H. Kumar, M. Aggarwal, Self-focusing of an elliptic-Gaussian laser beam in relativistic ponderomotive plasma using a ramp density profile. J. Opt. Soc. Am. B 35, 1635–1641 (2018)

    ADS  Google Scholar 

  26. M. Aggarwal, S. Vij, N. Kant, Propagation of circularly polarized quadruple Gaussian laser beam in magnetoplasma. Optik 126, 5710–5714 (2015)

    ADS  Google Scholar 

  27. S. Vij, M. Aggarwal, Quadruple Gaussian laser beam profile dynamics in collisionless magnetized plasma. Commun. Theor. Phys. 70, 317 (2018)

    ADS  MathSciNet  Google Scholar 

  28. S.D. Patil, A.T. Valkunde, B.D. Vhanmore, T.U. Urunkar, K.M. Gavade, M.V. Takale, Exploration of temperature range for self-focusing of lowest-order Bessel-Gaussian laser beams in plasma with relativistic and ponderomotive regime. AIP Conf. Proc. 2142, 110012 (2019)

    Google Scholar 

  29. S.D. Patil, B.D. Vhanmore, M.V. Takale, Analysis of temperature range for self-focusing of lowest-order Bessel-Gaussian laser beams in plasma. J. Opt. 49, 510–515 (2020)

    Google Scholar 

  30. S.D. Patil, B.D. Vhanmore, M.V. Takale, Analysis of intensity range for self-focusing of Bessel-Gauss laser beams in plasma. J. Russ. Laser Res. 42, 45–52 (2021)

    Google Scholar 

  31. B.D. Vhanmore, M.V. Takale, S.D. Patil, Influence of light absorption in the interaction of asymmetric elegant Hermite-cosh-Gaussian laser beams with collisionless magnetized plasma. Phys. Plasmas 27, 063104 (2020)

    ADS  Google Scholar 

  32. K.M. Gavade, T.U. Urunkar, B.D. Vhanmore, A.T. Valkunde, M.V. Takale, S.D. Patil, Self-focusing of Hermite-cosh-Gaussian laser beams in a plasma under a weakly relativistic and ponderomotive regime. J. Appl. Spectrosc. 87, 499–504 (2020)

    ADS  Google Scholar 

  33. N. Kant, V. Thakur, Combined influence of axial electron temperature and exponential plasma density ramp on the self-focusing of a chirped laser in plasma. Zeitschrift fur Naturforschung A 75, 671–675 (2020)

    ADS  Google Scholar 

  34. N. Kant, V. Thakur, Influence of linear absorption and density ramp on self-focusing of the Hermite-Gaussian chirped pulse laser in plasma. Opt. Quant. Electron. 53, 12 (2021)

    Google Scholar 

  35. G. Hefferon, A. Sharma, I. Kourakis, Electromagnetic pulse compression and energy localization in quantum plasmas. Phys. Lett. A. 374, 4336–4342 (2010)

    ADS  Google Scholar 

  36. S.D. Patil, M.V. Takale, S.T. Navare, M.B. Dongare, V.J. Fulari, Self-focusing of Gaussian laser beam in relativistic cold quantum plasma. Optik 124, 180–183 (2013)

    ADS  Google Scholar 

  37. M. Aggarwal, H. Kumar, N. Kant, Propagation of Gaussian laser beam through magnetized cold plasma with increasing density ramp. Optik 127, 2212–2216 (2016)

    ADS  Google Scholar 

  38. H. Kumar, M. Aggarwal, T.S. Gill, Combined effect of relativistic and ponderomotive nonlinearity on self-focusing of Gaussian laser beam in cold quantum plasma. Laser Part. Beams 34, 426–432 (2016)

    ADS  Google Scholar 

  39. M. Aggarwal, V. Goyal, H. Kumar, T.S. Gill, Weakly relativistic self-focusing of Gaussian laser beam in magnetized cold quantum plasma. Laser Part. Beams 35, 699–705 (2017)

    ADS  Google Scholar 

  40. M. Aggarwal, H. Kumar, J. Richa, T.S. Gill, Self-focusing of Gaussian laser beam in weakly relativistic and ponderomotive cold quantum plasma. Phys. Plasmas 24, 013108 (2017)

    ADS  Google Scholar 

  41. S.D. Patil, A.T. Valkunde, B.D. Vhanmore, T.U. Urunkar, K.M. Gavade, M.V. Takale, Influence of light absorption on relativistic self-focusing of Gaussian laser beam in cold quantum plasma. AIP Conf. Proc. 1953, 140046 (2018)

    Google Scholar 

  42. M. Aggarwal, V. Goyal, R. Kashyap, H. Kumar, T.S. Gill, Effects of plasma electron temperature and magnetic field on the propagation dynamics of Gaussian laser beam in weakly relativistic cold quantum plasma. Laser Part. Beams 37, 435–441 (2019)

    ADS  Google Scholar 

  43. V. Thakur, N. Kant, Exponential plasma density progression based self-focusing of laser in cold quantum plasma. Optik 179, 574–578 (2019)

    ADS  Google Scholar 

  44. M. Aggarwal, V. Goyal, R. Kashyap, H. Kumar, T.S. Gill, Spatiotemporal evolution of Gaussian laser pulse in weakly magnetized cold quantum plasma. Optik 208, 163137 (2020)

    ADS  Google Scholar 

  45. M. Aggarwal, H. Kumar, R. Mahajan, N.S. Arora, T.S. Gill, Relativistic ponderomotive self-focusing of quadruple Gaussian laser beam in cold quantum plasma. Laser Part. Beams 36, 353–358 (2018)

    ADS  Google Scholar 

  46. K. Walia, D. Tripathi, Self-focusing of elliptical laser beam in cold quantum plasma. Optik 186, 46–51 (2019)

    ADS  Google Scholar 

  47. V. Thakur, N. Kant, Combined effect of chirp and exponential density ramp on relativistic self-focusing of Hermite-Cosine-Gaussian laser in collisionless cold quantum plasma. Braz. J. Phys. 49, 113–118 (2019)

    ADS  Google Scholar 

  48. M.V. Berry, N.L. Balazs, Nonspreading wave-packets. Am. J. Phys. 47, 264–267 (1979)

    ADS  Google Scholar 

  49. P. Polynkin, M. Kolesik, J.V. Moloney, G.A. Siviloglou, D.N. Christodoulides, Curved plasma channel generation using ultra-intense Airy Beams. Sci. 324, 229–232 (2009)

    ADS  Google Scholar 

  50. J. Li, W. Zang, J. Tian, Vacuum laser-driven acceleration by Airy beams. Opt. Exp. 18, 7300–7306 (2010)

    Google Scholar 

  51. Z. Zheng, B. Zhang, H. Chen, J. Ding, H. Wang, Optical trapping with focused Airy beams. Appl. Opt. 50, 43–49 (2011)

    ADS  Google Scholar 

  52. D.M. Deng, H. Li, Propagation properties of Airy-Gaussian beams. Appl. Phys. B 106, 677–681 (2012)

    ADS  Google Scholar 

  53. L. Ouahid, L. Dalil-Essakali, A. Belafhal, Relativistic self-focusing of finite Airy-Gaussian laser beams in collisionless plasma using the Wentzel-Kramers-Brillouin approximation. Optik 154, 58–66 (2018)

    ADS  Google Scholar 

  54. V.S. Pawar, S.R. Kokare, S.D. Patil, M.V. Takale, Domains of modulation parameter in the interaction of finite Airy-Gaussian lasers beams with plasma. Laser and Part. Beams 38, 204–210 (2020)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Patil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pawar, V.S., Nikam, P.P., Kokare, S.R. et al. Relativistic self-focusing of finite Airy-Gaussian laser beams in cold quantum plasma. J Opt 50, 403–409 (2021). https://doi.org/10.1007/s12596-021-00718-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-021-00718-7

Keywords

Navigation