Skip to main content
Log in

Terbium-doped calcium germanate (Ca2GeO4) as a potential candidate for LED application

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Powder samples of Ca2GeO4 doped with 0.5, 1, 2 and 3 at.% Tb3+ were prepared via solid-state synthesis technique. The obtaining of pure phase at all dopant concentrations was proved through XRD analyses. In the emission and excitation spectra of the obtained powders, the characteristic peaks of Tb3+ ion were observed. The Tb3+ excitation spectrum in the range from 300 to 500 nm shows characteristic transitions of Tb3+, attributed to the f–f transitions. The strongest peak is located at 379 nm corresponding to the 7F6 → 5D3 transition. The main emission peak of Tb3+ is 5D4 → 7F5 transitions at 545 nm, corresponding to green color. Other transitions are located at 416 (5D3 → 7F5), 437 (5D3 → 7F4), 458 (5D3 → 7F3), 488 (5D4 → 7F6), 588 (5D4 → 7F4), 621 (5D4 → 7F3), 651 (5D4 → 7F2) and 675 (5D4 → 7F1) nm. The optimum emission is observed for 2 at.% Tb3+ ion concentration. At this concentration dominate also (5D4 → 7F4) and (5D4 → 7F3) transitions. CIE coordinates of the samples show different emission colors depending on the active ion concentration. The obtained results confirm that as-prepared terbium-doped materials could be used like green, yellow and reddish phosphors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Z.C. Feng, Handbook of Solid-State Lighting and LEDs (CRC Press, Boca Raton, FL, 2017)

    Book  Google Scholar 

  2. C.C. Lin, R. Liu, Advances in phosphors for light-emitting diodes. J. Phys. Chem. Lett. 2(11), 1268–1277 (2011)

    Article  Google Scholar 

  3. W. Yen, S. Shionoya, H. Yamamoto, Phosphor Handbook (CRC Press, Boca Raton, FL, 1998)

    Google Scholar 

  4. S.M. Shur, A. Zukauskas, Solid-state lighting: toward superior illumination. Proc. IEEE 93(10), 1691–1703 (2005)

    Article  Google Scholar 

  5. P. Guo, F. Zhao, G. Li, F. Liao, S. Tian, X. Jing, Novel phosphors of Eu3+, Tb3+ or Bi3+ activated Gd2GeO5. J. Lumin. 105(1), 61–67 (2003)

    Article  Google Scholar 

  6. S. Shionoya, W.M. Yen, H. Yamamoto, Phosphor Handbook (CRC Press, Boca Raton, FL, 2006)

    Google Scholar 

  7. R.S. Liu (ed.), Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications 1 (Springer, Berlin, 2016)

    Google Scholar 

  8. G. Blasse, B.C. Grabmaier, Luminescent Materials (Springer, Berlin, 2012)

    Google Scholar 

  9. N. Salvaggio, L.D. Stroebel, R.D. Zakia, Basic Photographic Materials and Processes, 3rd edn. (Elsevier, Amsterdam, 2009)

    Google Scholar 

  10. W. Eysel, T. Hahn, Polymorphism and solid solution of Ca2GeO4 and Ca2SiO4. Zeitschrift für Kristallographie-Crystall. Mater. 131(1–6), 322–341 (1970)

    Article  ADS  Google Scholar 

  11. G.J. Redhammer, G. Roth, G. Amthauer, W. Lottermoser, On the crystal chemistry of olivine-type germanate compounds, Ca1+xM1−xGeO4 (M2+ = Ca, Mg, Co, Mn). Acta Cryst. B 64(3), 261–271 (2008)

    Article  Google Scholar 

  12. J.M. Evans, V. Petričević, A.B. Bykov, A. Delgado, R.R. Alfano, Direct diode-pumped continuous-wave near-infrared tunable laser operation of Cr 4+: forsterite and Cr4+:Ca2GeO4. Opt. Lett. 22(15), 1171–1173 (1997)

    Article  ADS  Google Scholar 

  13. V. Petričević, A.B. Bykov, J.M. Evans, R.R. Alfano, Room-temperature near-infrared tunable laser operation of Cr4+:Ca2GeO4. SPIE Milest. Ser. 173, 262–264 (2002)

    Google Scholar 

  14. C. Li, J. Xu, W. Liu, D. Zheng, S. Zhang, Y. Zhang, F. Zeng, Synthesis and characterization of Cr4+-doped Ca2GeO4 tunable crystal. J. Alloys Compd. 636, 211–215 (2015)

    Article  Google Scholar 

  15. H.M. Yang, J.X. Shi, H.B. Liang, M.L. Gong, A novel green emitting phosphor Ca2GeO4:Tb3. Mater. Res. Bull. 41(4), 867–872 (2006)

    Article  Google Scholar 

  16. Y. Hongmei, S. Jianxin, G. Menglian, H. Liang, A novel red phosphor: Ca2GeO4:Eu3+. J. Rare Earths 28(4), 519–522 (2010)

    Article  Google Scholar 

  17. M. Shang, G. Li, D. Yang, X. Kang, C. Zhang, J. Lin, Red emitting Ca2GeO4:Eu3+ phosphors for field emission displays. J. Electrochem. Soc. 158(4), J125–J131 (2011)

    Article  Google Scholar 

  18. J. Zhang, M. Zhou, Q. Qin, M. Yu, Y. Wang, The electronic structure and photoluminescence properties of Ca2GeO4:Eu3+ in ultraviolet and vacuum ultraviolet region. J. Lumin. 131(8), 1636–1640 (2011)

    Article  Google Scholar 

  19. L.V. Ermakova, I.I. Leonidov, Towards a new group of olivine-type afterglow phosphors: the case of Ca2GeO4:Dy3+. Mater. Lett. 233, 39–41 (2018)

    Article  Google Scholar 

  20. Bruker AXS EVA 2, DIFFRAC plus Evaluation Package (2009)

  21. T.I. Ovsetsina, V.V. Yunin, I.A. Verin, E.V. Chuprunov, Crystal structure of calcium orthogermanate Ca2GeO4. In: Vestnik Nizhegorodskogo universiteta im. Lobachevskogo. Ser. Fizika tverdogo, vol. 1, pp. 72–74. http://www.unn.ru/pages/e-library/vestnik/99990192_West_fisika_2004_1(7)/B_1-7.pdf(in Russian)

  22. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 32(5), 751–767 (1976)

    Article  Google Scholar 

  23. M. Gaft, R. Reisfeld, G. Panczer, Modern Luminescence Spectroscopy of Minerals and Materials (Springer, Berlin, 2015)

    Book  Google Scholar 

  24. H.C. Aspinall, Chemistry of the f-Block Elements, vol. 5 (CRC Press, Boca Raton, FL, 2001)

    Google Scholar 

  25. M. Li, X. Yu, T. Wang, J. Qiu, X. Xu, White-blue long persistent luminescence in Ca2Ge7O16:Tb3+ via persistent energy transfer. Ceram. Int. 41(9), 11523–11527 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The research is financially supported by the National Science Fund of Bulgaria (Contract No. KP-06-H29/10). Research equipment of distributed research infrastructure INFRAMAT (part of Bulgarian National roadmap for research infrastructures) supported by Bulgarian Ministry of Education and Science under Contract D01-284/17.12.2019 was used in this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Tomova.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koseva, I., Tzvetkov, P., Ivanov, P. et al. Terbium-doped calcium germanate (Ca2GeO4) as a potential candidate for LED application. J Opt 49, 403–407 (2020). https://doi.org/10.1007/s12596-020-00634-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-020-00634-2

Keywords

Navigation