Skip to main content
Log in

Combustion Synthesis of YAG:Nd: Structural, Luminescent Characterization and Influence of Si Doping

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

Neodymium-doped yttrium aluminum garnet (YAG:Nd) powder was prepared by solution-combustion synthesis using aluminum nitrate, yttrium nitrate, neodymium nitrate, urea, and glycine as starting materials. The characteristic near-IR emission of Nd3+ at 1067 nm was found to maximize at a Nd3+ concentration of 1 mol %. The impact of Si4+ co-doping on the crystal structure, morphology, and photoluminescence has also been studied. In the presence of the dopant, the emission intensity enhanced by 21% at an optimal Si4+ content of YAG:Nd3+ phosphor, which can be attributed to improvement in crystallinity, formation of pure phase, and creation of color centers due to mismatch in ionic radii between parent and doped ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Harada, Y., Suzuki, T., Hirano, K., Nakagawa, N., and Waku, Y., Environmental effects on ultra-high temperature creep behavior of directionally solidified oxide eutectic ceramic, J. Eur. Ceram. Soc., 2005, vol. 25, no. 8, pp. 1275–1283. https://doi.org/10.1016/j.jeurceramsoc.2005.01.028

    Article  CAS  Google Scholar 

  2. Yagi, H., Yanagitani, T., Numazawa, T., and Ueda, K., The physical properties of transparent Y3Al5O12: Elastic modulus at high temperature and thermal conductivity at low temperature, Ceram. Int., 2007, vol. 33, no. 5, pp. 711–714. https://doi.org/10.1016/j.ceramint.2005.12.007

    Article  CAS  Google Scholar 

  3. Belouet, C., About crystalline perfection of Nd-doped YAG single crystals, J. Cryst. Growth, 1972, vol. 15, no. 3, pp. 188–194. https://doi.org/10.1016/0022-0248(72)90118-2

    Article  CAS  Google Scholar 

  4. Ikesue, A., Kinoshita, T., Kamata, K., and Yoshida, K., Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers, J. Am. Ceram. Soc., 1995, vol. 78, no. 4, pp. 1033–1040. https://doi.org/10.1111/j.1151-2916.1995.tb08433.x

    Article  CAS  Google Scholar 

  5. Lu, J., Ueda, K.-I., Yagi, H., Yanagitani, T., Akiyama, Y., and Kaminskii, A.A., Neodymium-doped yttrium aluminium garnet Y3Al5O12 nanocrystalline ceramics: A new generation of solid-state laser and optical materials, J. Alloys Compd., 2002, vol. 341, nos. 1–2, pp. 220–225. https://doi.org/10.1016/S0925-8388(02)00083-X

    Article  CAS  Google Scholar 

  6. Liu, W., Li, J., Jiang, B., Zhang, D., and Pan, Y., 2.44 kW laser output of Nd:YAG ceramic slab fabricated by a solid-state reactive sintering, J. Alloys Compd., 2012, vol. 538, pp. 258–261. https://doi.org/10.1016/j.jallcom.2012.05.050

    Article  CAS  Google Scholar 

  7. Zhou, S.H., Fu, Z.L., Zhang, J.J., and Zhang, S.Y., Spectral properties of rare-earth ions in nanocrystalline YAG:Re (Re = Ce3+, Pr3+, Tb3+), J. Lumin., 2006, vol. 118, no. 2, pp. 179–185. https://doi.org/10.1016/j.jlumin.2005.08.011

    Article  CAS  Google Scholar 

  8. Upasani, M., Butey, B., and Moharil, S.V., Photoluminescence study of rare earth doped yttrium aluminum garnet YAG:RE (RE: Eu3+, Pr3+ and Tb3+), Optik, 2016, vol.127, no. 4, pp. 2004–2006. https://doi.org/10.1016/j.ijleo.2015.11.070

    Article  CAS  Google Scholar 

  9. Upasani, M., Butey, B., and Moharil, S.V., Combustion synthesis and structural characterization of YAG: Influence of fuel and Si doping, Int. J. Self-Propag. High-Temp. Synth., 2017, vol. 26, no. 1, pp. 22–32.https://doi.org/10.3103/S1061386217010149

    Article  CAS  Google Scholar 

  10. Putz, H., Brandenburg, K., and Bonn, G.R., Crystal Impact, Match! software v. 3.11.4.199. http://www.crystalimpact.com/match/download.html.

  11. Kuklja, M.M., Defects in yttrium aluminum perovskite and garnet crystals: Atomistic study, J. Phys.: Condens. Matter, 2000, vol. 12, no. 13, pp. 2953–2967.

    CAS  Google Scholar 

  12. Scherrer, P., Bestimmung der Grösse und der Inneren Struktur von Kolloidteilchen Mittels Röntgensrahlen, Nachr. Ges. Wiss. Goettingen: Math.–Phys. Kl, 1918, pp. 98–100.

    Google Scholar 

  13. Williamson, G.K. and Hall, W.H., X-ray line broadening from filed aluminum and wolfram, Acta Metall., 1953, vol. 1, no. 1, pp. 22–31. https://doi.org/10.1016/0001-6160(53)90006-6

    Article  CAS  Google Scholar 

  14. Cullity, B.D., Elements of X-Ray Diffraction, Reading, MA: Addison-Wesley, 1956.

    Google Scholar 

  15. Rietveld, H.M., A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr., 1969, vol. 2, no. 1, pp. 65–71. https://doi.org/10.1107/S0021889869006558

    Article  CAS  Google Scholar 

  16. Muliuoliene, I., Mathur, S., Jasaitis, D., Shen, H., Sivakov, V., Rapalaviciute, R., Beganskiene, A., and Kareiva, A., Evidence of the formation of mixed-metal garnets via sol–gel synthesis, Opt. Mater., 2003, vol. 22, no. 3, pp. 241–250. https://doi.org/10.1016/S0925-3467(02)00271-9

    Article  CAS  Google Scholar 

  17. Zhou, Y., Lin, J., Yu, M., Wang, S., and Zhang, H., Synthesis-dependent luminescence properties of Y3Al5O12:Re3+ (Re = Ce, Sm, Tb) phosphors, Mater. Lett., 2002, vol. 56, no. 5, pp. 628–636. https://doi.org/10.1016/S0167-577X(02)00567-0

    Article  CAS  Google Scholar 

  18. Mürk, V., Exciton relaxation in wide-gap complex oxides, Mater. Sci. Forum, 1997, vol. 239–241, pp. 537–542. https://doi.org/10.4028/www.scientific.net/MSF.239-241.537

    Article  Google Scholar 

  19. Varney, C.R., Mackay, D.T., Reda, S.M., and Selim, F.A., On the optical properties of undoped and rare-earth doped yttrium aluminum garnet single crystals, J. Phys. D: Appl. Phys., 2012, vol. 45, no. 1, 015103. https://doi.org/10.1088/0022-3727/45/1/015103

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in public, commercial, and not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Upasani.

Ethics declarations

The authors declare no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upasani, M., Butey, B. & Moharil, S.V. Combustion Synthesis of YAG:Nd: Structural, Luminescent Characterization and Influence of Si Doping. Int. J Self-Propag. High-Temp. Synth. 30, 145–152 (2021). https://doi.org/10.3103/S1061386221030092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386221030092

Keywords:

Navigation