Skip to main content
Log in

All-optical integrated square root of Pauli-Z (SRZ) gates using polarization and phase encoding

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Quantum square root of Pauli-Z (SRZ) gate is a very important logical gate in the world of quantum computing. It is very difficult to implement such type of gate physically because of the complex nature of qubits. Here, the authors propose a simple method of implementation of an integrated system of all-optical SRZ gate using polarization and phase encoding technique jointly. This is done because the joint use of both the encoding techniques is found to be very suitable to implement the gate matrix physically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Laing, A. Peruzzo, A. Politi et al., High-fidelity operation of quantum photonic circuits. Appl. Phys. Lett. 97, 211109 (2010)

    Article  ADS  Google Scholar 

  2. S. Mukhopadhyay, Role of optics in super-fast information processing. Indian J. Phys. 84(8), 1069–1074 (2010)

    Article  ADS  Google Scholar 

  3. D.E. Chang, V. Vuletić, M.D. Lukin, Quantum nonlinear optics—photon by photon. Nat. Photonics 8, 685–694 (2014)

    Article  ADS  Google Scholar 

  4. D. Samanta, S. Mukhopadhyay, All-optical method for maintaining a fixed intensity level of a light signal in optical computation. Opt. Commun. 281(19), 4851–4853 (2008)

    Article  ADS  Google Scholar 

  5. C. Vitelli, N. Spagnolo, L. Aparo et al., Joining the quantum state of two photons into one. Nat. Photonics 7, 521–526 (2013)

    Article  ADS  Google Scholar 

  6. H.S. Zeng, Q. Wang, X.M. Fang et al., Universal quantum gates between distant quantum dot spins. Phys. Lett. A 374(21), 2129–2132 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  7. A. Barenco, C.H. Bennett, R. Cleve et al., Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)

    Article  ADS  Google Scholar 

  8. P. Xue, Universal quantum computing with semiconductor double-dot molecules on a chip. Phys. Lett. A 374(26), 2601–2604 (2010)

    Article  ADS  Google Scholar 

  9. A. Pal, S. Mukhopadhyay, An alternative approach of developing a frequency encoded optical tri-state multiplexer with broad area semiconductor optical amplifier (BSOA). Opt. Laser Technol. 44(1), 281–284 (2012)

    Article  ADS  Google Scholar 

  10. I.S. Maksymov, Optical switching and logic gates with hybrid plasmonic–photonic crystal nanobeam cavities. Phys. Lett. A 375(5), 918–921 (2011)

    Article  ADS  Google Scholar 

  11. A. Srivastava, S. Medhekar, Switching of one beam by another in a Kerr type nonlinear Mach–Zehnder interferometer. Opt. Laser Technol. 43(1), 29–35 (2011)

    Article  ADS  Google Scholar 

  12. J.A. Jones, Nested composite NOT gates for quantum computation. Phys. Lett. A 377(40), 2860–2862 (2013)

    Article  ADS  Google Scholar 

  13. R. Forsati, S.V. Ebrahimi, K. Navi et al., Implementation of all-optical reversible logic gate based on holographic laser induced grating using azo-dye doped polymers. Opt. Laser Technol. 45, 565–570 (2013)

    Article  ADS  Google Scholar 

  14. M.A. Pooley, D.J.P. Ellis, R.B. Patel et al., Controlled-NOT gate operating with single photons. Appl. Phys. Lett. 100, 211103 (2012)

    Article  ADS  Google Scholar 

  15. J. Stolze, A.I. Zenchuk, Two-channel spin-chain communication line and simple quantum gates. Phys. Lett. A 381(31), 2489–2496 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  16. E. Dimitriadou, K.E. Zoiros, On the design of ultrafast all-optical NOT gate using quantum-dot semiconductor optical amplifier-based Mach–Zehnder interferometer. Opt. Laser Technol. 44(3), 600–607 (2012)

    Article  ADS  Google Scholar 

  17. M. Sen, M.K. Das, High-speed all-optical logic inverter based on stimulated Raman scattering in silicon nanocrystal. Appl. Opt. 54(31), 9136–9142 (2015)

    Article  ADS  Google Scholar 

  18. H.F. Wang, J.J. Wen, A.D. Zhu et al., Deterministic CNOT gate and entanglement swapping for photonic qubits using a quantum-dot spin in a double-sided optical microcavity. Phys. Lett. A 377(40), 2870–2876 (2013)

    Article  ADS  Google Scholar 

  19. K. Roy Chowdhury, D. De, S. Mukhopadhyay, Parity checking and generating circuit with nonlinear material in all-optical domain. Chin. Phys. Lett. 22(6), 1433–1435 (2005)

    Article  Google Scholar 

  20. H. Kim, R. Bose, T.C. Shen et al., A quantum logic gate between a solid state quantum bit and a photon. Nat. Photonics 7, 373–377 (2013)

    Article  ADS  Google Scholar 

  21. J. Hu, Y.P. Huang, P. Kumar, Self-stabilized quantum optical Fredkin gate. Opt. Lett. 38, 522–524 (2013)

    Article  ADS  Google Scholar 

  22. S. Dey, S. Mukhopadhyay, ‘All-optical high frequency clock pulse generator using the feedback mechanism in Toffoli gate with Kerr material. J. Nonlinear Opt. Phys. Mater. 25(1), 1650012 (2016)

    Article  ADS  Google Scholar 

  23. M. Swaddle, L. Noakes, H. Smallbone et al., Generating three-qubit quantum circuits with neural networks. Phys. Lett. A 381(39), 3391–3395 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  24. S.C. Hou, L.C. Wang, X.X. Yi, Realization of quantum gates by Lyapunov control. Phys. Lett. A 378(9), 699–704 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  25. M. Soeken, D.M. Miller, R. Drechsler, Quantum circuits employing roots of the Pauli matrices. Phys. Rev. A 88, 042322 (2013)

    Article  ADS  Google Scholar 

  26. B. Sarkar, S. Mukhopadhyay, An all optical scheme for implementing an integrated Pauli’s X, Y and Z quantum gates with optical switches. J. Opt. 46(2), 143–148 (2017)

    Article  Google Scholar 

  27. S. Dey, S. Mukhopadhyay, Approach of implementing phase encoded quantum square root of NOT gate. Electron. Lett. 53(20), 1375–1377 (2017)

    Article  Google Scholar 

  28. S. Dey, S. Mukhopadhyay, Implementation of all-optical Pauli-Y gate by the integrated phase and polarization encoding. IET Optoelectron. 12(4), 176–179 (2018)

    Article  Google Scholar 

  29. A. Yariv, P. Yeh, Photonics—Optical Electronics in Modern Communication, 6th edn. (Oxford University Press, New York, 2007)

    Google Scholar 

  30. A. Ghatak, K. Thyagarajan, Optical Electronics (Cambridge University Press, New York, 1991)

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Science and Technology, Government of India, for financial support in terms of the INSPIRE fellowship scheme to Shuvra Dey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuvra Dey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, S., Mukhopadhyay, S. All-optical integrated square root of Pauli-Z (SRZ) gates using polarization and phase encoding. J Opt 48, 520–526 (2019). https://doi.org/10.1007/s12596-019-00568-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-019-00568-4

Keywords

Navigation