Skip to main content
Log in

Photoacoustics: a nondestructive evaluation technique for thermal and optical characterisation of metal mirrors

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Photoacoustic technique has emerged as a powerful tool for nondestructive evaluation and characterization. The high signal to noise ratio, sensitivity, and the least quantity of sample required make the technique suitable for wide range of applications. The intensity modulated laser beam focused on to the sample in the photoacoustic cell generates acoustic waves. Analysis of the acoustic signal enables the measurement of thermal and optical properties of the material. In the present work, the photoacoustic technique has been extended to find the thermal diffusivity and to demonstrate how the technique can be used for measuring optical reflection coefficient of a precious metal mirror—Aranmula mirror. The mirror being metal with high reflection coefficient, it finds application in optical instrumentation. The mirror is subjected to morphological characterization by atomic force microscopy and field emission scanning electron microscopy. The elemental and structural characterizations are done by energy dispersive x-ray spectroscopy, X-ray dot mapping, and X-Ray diffraction analysis. The fractal dimension of the particle distribution over the surface provides information about the surface roughness. The box-counting and power spectral fractal dimensions are found to be around 1.63 and 1.65 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.M. Lomonosov, A.P. Mayer, P. Hess, in Modern Acoustical Techniques for the Measurement of Mechanical Properties, vol. 39, ed. by M. Levy, H.E. Bass, R. Stern (Academic, San Diego, 2001), pp. 65–134

    Chapter  Google Scholar 

  2. Yu. Ivochkin, A.A. Karabutov, M.L. Lyamshev, I.M. Pelivanov, U. Rohatgi, M. Subudhi, Measurement of velocity distribution for longitudinal acoustic waves in welds by a laser optoacoustic technique. Acoust. Phys. 53(4), 471–477 (2007)

    Article  ADS  Google Scholar 

  3. M. Dubois, K. Burr, T. Drake, Laser phase noise reduction for industrial interferometric applications. Appl. Opt. 43(22), 4399–4407 (2004)

    Article  ADS  Google Scholar 

  4. M.H. Xu, L.H.V. Wang, Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77(4), 041101–041122 (2006)

    Article  ADS  Google Scholar 

  5. A.A. Karabutov, V.A. Larichev, G.A. Maksimov, I.M. Pelivanov, N.B. Podymova, Relaxation dynamics of a broadband nanosecond acoustic pulse in a bubbly medium. Acoust. Phys. 52(5), 582–588 (2006)

    Article  ADS  Google Scholar 

  6. X. Jian, S. Dixon, N. Guo, R. Edwards, Rayleigh wave interaction with surface-breaking cracks. J. Appl. Phys. 101, 064906 (2007)

    Article  ADS  Google Scholar 

  7. A.S. Murfin, R.A.J. Soden, D. Hatrick, R.J. Dewhurst, Laser-ultrasound detection systems: a comparative study with Rayleigh waves. Meas. Sci. Technol. 11(8), 1208 (2000)

    Article  ADS  Google Scholar 

  8. J. P. Monchalin, in AIP Conference Proceedings on Review of Progress in Quantitative Nondestructive Evaluation, No. 23A, ed. by D. O. Thompson, D. E. Chimenti (AIP, New York, 2004), p. 3

  9. A. Bennis, A.M. Lomonosov, Z.H. Shen, P. Hess, Laser-based measurement of elastic and mechanical properties of layered polycrystalline silicon structures with projection masks. Appl. Phys. Lett. 88(10), 101915 (2006)

    Article  ADS  Google Scholar 

  10. A.G. Rosencwaig, Theory of the photoacoustic effect with solids. J. Appl. Phys. 47(1), 641975 (2008)

    Google Scholar 

  11. A.C. Tam, C.K.N. Patel, R.J. Keri, Measurement of small absorptions in liquids. Opt. Lett. 4(3), 81–83 (1979)

    Article  ADS  Google Scholar 

  12. G.C. Wetsel Jr., F.A. McDonald, Photoacoustic determination of absolute optical absorption coefficient. Appl. Phys. Lett. 30(5), 252 (1977)

    Article  ADS  Google Scholar 

  13. S.G.K. Pillai, R.M. Pillai, A.D. Damodaran, Ancient metal-mirror making in South India: analysing a mysterious alloy. J. Met. 44(3), 38–40 (1992)

    Google Scholar 

  14. S. Srinivasan, I. Glover, Skilled mirror craft of metallic delta high-tin bronze (Cu31Sn8, 32.6% tin) from Aranmula, Kerala. Curr. Sci. 93(1), 35–40 (2007)

    Google Scholar 

  15. S. Maleki, S. Ghammamy, J. Salehzadeh, A study on fractality properties of nano particles of nanoparticles scanning electron microscopy images. Leonardo J. Sci. 25, 111–116 (2014)

    Google Scholar 

  16. A.K. Bisoi, J. Mishra, On calculation of fractal dimension of images. Pattern Recogn. Lett. 22, 631–637 (2001)

    Article  MATH  Google Scholar 

  17. M.S. Swapna, S.S. Shinker, A.S. Lekshmi, S. Sankararaman, Fractal and fingerprint analysis through phase embedded diffraction pattern. Int. J. Eng. Sci. Technol. (IJEST) 9(8), 816–820 (2017)

    Google Scholar 

  18. M.S. Swapna, S. Sankararaman, Fractal analysis—a surrogate technique for material characterization. Nanosyst. Phys. Chem. Math. 8(6), 809–815 (2017)

    Article  Google Scholar 

  19. S. Soumya, M.S. Swapna, S. Sankararaman, Nondestructive evaluation of surface roughness of thin films through fractal analysis. Int. J. Nanotechnol. Appl. 11(3), 255–259 (2017)

    Google Scholar 

  20. S. Soumya, M.S. Swapna, V. Raj, V.P.M. Pillai, S. Sankararaman, Fractal analysis as a potential tool for surface morphology of thin films. Eur. Phys. J. Plus 132, 551 (2017)

    Article  Google Scholar 

  21. M.S. Swapna, H.V.S. Devi, V. Raj, S. Sankararaman, Fractal and spectroscopic analysis of soot from internal combustion engines. Eur. Phys. J. Plus 133, 106 (2018)

    Article  Google Scholar 

  22. S.E. Hough, On the use of spectral methods for the determination of fractal dimension. Geophys. Res. Lett. 16(7), 673 (1989)

    Article  ADS  Google Scholar 

  23. H.E. Schepers, J.H. Van Beek, J.B. Bassingthwaighte, Four methods to estimate the fractal dimension from self-affine signals (medical application). IEEE Eng. Med. Biol. Mag. 11(2), 57 (1992)

    Article  Google Scholar 

  24. P. Charpentier, F. Lepoutre, L. Bertrand, Photoacoustic measurements of thermal diffusivity description of the “drum effect”. J. Appl. Phys. 53(1), 608–614 (1982)

    Article  ADS  Google Scholar 

  25. S. Sankararaman, V.P.N. Nampoori, C.P.G. Vallabhan, G. Ambadas, S. Sugunan, Photoacoustic study of the effect of degassing temperature on thermal diffusivity of hydroxyl loaded alumina. Appl. Phys. Lett. 67, 2939 (1995)

    Article  ADS  Google Scholar 

  26. S. Riya, M.S. Swapna, R. Vimal, H. Misha, S. Sankararaman, Thermal diffusivity control in titanium dioxide nanofluid through phase tuning. Mater. Res. Express. (2018). https://doi.org/10.1088/2053-1591/aab41d

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sankararaman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swapna, M.S., Nampoori, V.P.N. & Sankararaman, S. Photoacoustics: a nondestructive evaluation technique for thermal and optical characterisation of metal mirrors. J Opt 47, 405–411 (2018). https://doi.org/10.1007/s12596-018-0471-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-018-0471-0

Keywords

Navigation