Skip to main content
Log in

Large field enhancement and perfect absorption by coupling between dark plasmon mode and surface plasmon polaritons

  • Cover Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

The coupled plasmonic film-nanoparticles systems can realize the optical absorption and large electric field enhancement when modes hybridize. In this paper, we report, for the first time, a coupling effect between dark plasmon mode and surface plasmon polaritions in nanorod dimers plasmonic metamaterial. Near-perfect absorption and extremely large field enhancement can be achieved in coupled systems, which provide a new insight to design the high-performance surface enhanced chips for detecting individual molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. B. Luk’yanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessen, C.T. Chong, The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707 (2010)

    Article  ADS  Google Scholar 

  2. A.E. Miroshnichenko, S. Flach, Y.S. Kivshar, Fano resonances in nanoscale structures. Rev. Modern Phys. 82, 2257 (2010)

    Article  ADS  Google Scholar 

  3. Z. Dong, P. Ni, J. Zhu, X. Zhang, Transparency window for the absorptive dipole resonance in a symmetry-reduced grating structure. Opt. Express 20, 7206 (2012)

    Article  ADS  Google Scholar 

  4. J. Wang, C. Fan, P. Ding, J. He, Y. Cheng, W. Hu, G. Cai, E. Liang, Q. Xue, Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency. Opt. Express 20, 14871 (2012)

    Article  ADS  Google Scholar 

  5. J. Wang, X. Liu, L. Li, J. He, C. Fan, Y. Tian, P. Ding, D. Chen, Q. Xue, E. Liang, Huge electric field enhancement and highly sensitive sensing based on the Fano resonance effect in an asymmetric nanorod pair. J. Opt. 15, 105003 (2013)

    Article  ADS  Google Scholar 

  6. K. Wen, Y. Hu, L. Chen, J. Zhou, Z. Guo, Fano resonance with ultra-high figure of merits based on plasmonic metal-insulator-metal waveguide. Plasmonics 10, 27 (2015)

    Article  Google Scholar 

  7. J. Bai, K.Q. Le, Enhanced absorption efficiency of ultrathin metamaterial solar absorbers by plasmonic Fano resonance. J. Opt. Soc. AM. B 32, 595 (2015)

    Article  ADS  Google Scholar 

  8. J. Wang, J. Zhang, C. Fan, K. Mu, E. Liang, P. Ding, Electromagnetic field manipulation in planar nanorod antennas metamaterial for slow light application. Opt. Commun. 383, 36 (2017)

    Article  ADS  Google Scholar 

  9. S. Zhang, D.A. Genov, Y. Wang, M. Liu, X. Zhang, Plasmon-induced transparency in metamaterials. Phys. Rev. Lett. 101, 047401 (2008)

    Article  ADS  Google Scholar 

  10. A. Ahmadivand, N. Pala, Plasmon resonance hybridization in self-assembled copper nanoparticle clusters: efficient and precise localization of surface plasmon resonance (LSPR) sensing based on Fano resonances. Appl. Spectrosc. 69, 277 (2015)

    Article  ADS  Google Scholar 

  11. F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, S.A. Maier, Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. ACS Nano 3, 643 (2009)

    Article  Google Scholar 

  12. R. Singh, I.A. Al-Naib, M. Koch, W. Zhang, Sharp Fano resonances in THz metamaterials. Opt. Express 19, 6312 (2011)

    Article  ADS  Google Scholar 

  13. A. Fang, S.L. White, R.A. Masitas, F.P. Zamborini, P.K. Jain, One-to-One correlation between structure and optical response in a heterogeneous distribution of plasmonic constructs. J. Phys. Chem. C 119, 150928065944009 (2015)

    Google Scholar 

  14. Z. Yang, Z. Hao, H. Lin, Q. Wang, Plasmonic Fano resonances in metallic nanorod complexes. Nanoscale 6, 4985 (2014)

    Article  ADS  Google Scholar 

  15. Z.Y. Fang, J. Cai, Z. Yan, P. Nordlander, N.J. Halas, X. Zhu, Removing a wedge from a metallic nanodisk reveals a Fano resonance. Nano Lett. 11, 4475 (2011)

    Article  ADS  Google Scholar 

  16. J. Chen, R. Xu, M. Peng, Y. Zhang, Y. Liu, C. Tang, J. Liu, T. Chen, Realization of Fanolike resonance due to diffraction coupling of localized surface plasmon resonances in embedded nanoantenna arrays. Plasmonics 10, 341 (2015)

    Article  Google Scholar 

  17. O. Peña-Rodríguez, A. Rivera, M. Campoy-Quiles, U. Pal, Tunable Fano resonance in symmetric multilayered gold nanoshells. Nanoscale 5, 209 (2013)

    Article  ADS  Google Scholar 

  18. J. Wang, C. Fan, J. He, P. Ding, E. Liang, Q. Xue, Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity. Opt. Express 21, 2236 (2013)

    Article  ADS  Google Scholar 

  19. J. Wang, J. Zhang, Y. Tian, C. Fan, K. Mu, S. Chen, E. Liang, Theoretical investigation of a multi-resonance plasmonic substrate for enhanced coherent anti-Stokes Raman scattering. Opt. Express 25, 497 (2017)

    Article  ADS  Google Scholar 

  20. W. Zhou, X. Wang, J. Wang, Polarization and angle quasi-independent metamaterial crystal with electromagnetically induced transparency based on plasmon hybridization. J. Modern Opt. 62, 1027 (2015)

    Article  ADS  Google Scholar 

  21. T.J. Arruda, A.S. Martinez, F.A. Pinheiro, Tunable multiple Fano resonances in magnetic single-layered core-shell particles. Phys. Rev. A 92, 023835 (2015)

    Article  ADS  Google Scholar 

  22. P. Ding, E. Liang, G. Cai, W. Hu, C. Fan, Q. Xue, Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials. J. Opt. 13, 075005 (2011)

    Article  ADS  Google Scholar 

  23. Y. Chu, D. Wang, W. Zhu, K.B. Crozier, Double resonance surface enhanced Raman scattering substrates: an intuitive coupled oscillator model. Opt. Express 19, 14919 (2011)

    Article  ADS  Google Scholar 

  24. E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, Cambridge, 1985)

    Google Scholar 

  25. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824 (2003)

    Article  ADS  Google Scholar 

  26. Y. Chu, M.G. Banaee, K.B. Crozier, Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies. ACS Nano 4, 2804 (2010)

    Article  Google Scholar 

  27. A. Li, S. Isaacs, I. Abdulhalim, S. Li, Ultrahigh enhancement of electromagnetic fields by exciting localized with extended surface plasmons. J. Phys. Chem. C 119, 19382 (2015)

    Article  Google Scholar 

  28. E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, A hybridization model for the plasmon response of complex nanostructures. Science 302, 419 (2003)

    Article  ADS  Google Scholar 

  29. E.C. Le Ru, P.G. Etchegoin, Rigorous justification of the |E|4 enhancement factor in surface enhanced Raman spectroscopy. Chem. Phys. Lett. 423, 63 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (11504333, 61505178, 11404290, and 11404291), and the Outstanding Young Talent Research Fund of Zhengzhou University (1521317007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junqiao Wang or Zhifeng Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, N., Wang, J., Zhang, J. et al. Large field enhancement and perfect absorption by coupling between dark plasmon mode and surface plasmon polaritons. J Opt 47, 301–306 (2018). https://doi.org/10.1007/s12596-018-0451-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-018-0451-4

Keywords

Navigation