Skip to main content
Log in

Realization of Fanolike Resonance Due to Diffraction Coupling of Localized Surface Plasmon Resonances in Embedded Nanoantenna Arrays

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We present a straightforward method to realize Fanolike resonance due to diffraction coupling of localized surface plasmon (SP) resonances by embedding the nanoantenna arrays into the substrate. Light transmission spectra of the embedded nanoantenna arrays are theoretically studied and show a Fanolike resonance resulting from the interference between localized SP resonances excited on individual plasmonic nanoantennas and an in-plane propagating collective surface mode arising from the array periodicity. The effect can be attributed to the fact that our approach, by embedding the nanoantenna arrays into the substrate, offers a more homogeneous dielectric background allowing stronger diffraction coupling among nanoantennas leading to the Fanolike resonance. Upon the excitation of this Fanolike resonance, a nearly 110 times enhancement of electric fields was achieved as compared with the purely resonance. More importantly, we also found that in addition to the above requirement of homogeneous dielectric background, only a collective surface mode with its electric field parallel to the array plane can mediate the excitation of such a Fanolike resonance. The steep dispersion of the Fano resonance profile and enhanced electric fields obtained in these structures could be attractive for biosensing and nonlinear photonics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kreibig U, Völlmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Book  Google Scholar 

  2. Mao P, Chen J, Xu RQ, Xie GZ, Liu YJ, Gao GH, Wu S (2014) Self-assembled silver nanoparticles: correlation between structural and surface plasmon resonance properties. Appl Phys A 117(3):1067–1073

    Article  CAS  Google Scholar 

  3. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758):189–193

    Article  CAS  Google Scholar 

  4. Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to waveguiding. Nat Photonics 1(11):641–648

    Article  CAS  Google Scholar 

  5. Stockman MI, Shalaev VM, Moskovits M, Botet R, George TF (1992) Enhanced Raman scattering by fractal clusters: scale invariant theory. Phys Rev B 46(5):2821–2830

    Article  Google Scholar 

  6. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78(9):1667–1670

    Article  CAS  Google Scholar 

  7. Chen J, Xu RQ, Yan ZD, Tang CJ, Chen Z, Wang ZL (2013) Preparation of metallic triangular nanoparticle array with controllable interparticle distance and its application in surface-enhanced Raman spectroscopy. Opt Commun 307:73–75

    Article  CAS  Google Scholar 

  8. Adato R, Yanik AA, Amsden JJ, Kaplan DL, Omenetto FG, Hong MK, Erramilli S, Altug H (2009) Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays. Proc Natl Acad Sci 106(46):19227–19232

    Article  CAS  Google Scholar 

  9. Neubrech F, Pucci A, Cornelius TW, Karim S, García-Etxarri A, Aizpurua J (2008) Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. Phys Rev Lett 101(15):157403

    Article  Google Scholar 

  10. Sánchez EJ, Novotny L, Xie XS (1999) Near-field fluorescence microscopy based on two-photon excitation with metal tips. Phys Rev Lett 82(20):4014–4017

    Article  Google Scholar 

  11. Jiang H, Gordon R (2013) Nonlinear plasmonics: four-photon near-field photolithography using optical antennas. Plasmonics 8(4):1655–1665

    Article  CAS  Google Scholar 

  12. Ferry VE, Sweatlock LA, Pacifici D, Atwater HA (2008) Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett 8(12):4391–4397

    Article  CAS  Google Scholar 

  13. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  CAS  Google Scholar 

  14. Nasser H, Saleh ZM, Ozkol E, Gunoven M, Bek A, Turan R (2013) Fabrication of Ag nanoparticles embedded in Al:ZnO as potential light-trapping plasmonic interface for thin film solar cells. Plasmonics 8(3):1485–1492

    Article  CAS  Google Scholar 

  15. Linden S, Kuhl J, Giessen H (2001) Controlling the interaction between light and gold nanoparticles: selective suppression of extinction. Phys Rev Lett 86(20):4688–4691

    Article  CAS  Google Scholar 

  16. Gantzounis G, Stefanou N, Papanikolaou N (2008) Optical properties of periodic structures of metallic nanodisks. Phys Rev B 77(3):035101–035107

    Article  Google Scholar 

  17. Haynes CL, McFarland AD, Zhao L, Van Duyne RP, Schatz GC, Gunnarsson L, Prikulis L, Kasemo B, Kall M (2003) Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J Phys Chem B 107(30):7337–7342

    Article  CAS  Google Scholar 

  18. Bouhelier A, Bachelot R, Im JS, Wiederrecht GP, Lerondel G, Kostcheev S, Royer P (2005) Electromagnetic interactions in plasmonic nanoparticle arrays. J Phys Chem B 109(8):3195–3198

    Article  CAS  Google Scholar 

  19. Zou S, Janel N, Schatz GC (2004) Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J Chem Phys 120(23):10871–10875

    Article  CAS  Google Scholar 

  20. Zou S, Schatz GC (2006) Theoretical studies of plasmon resonances in one dimensional nanoparticles chains: narrow lineshapes with tunable widths. Nanotechnology 17(11):2813–2820

    Article  CAS  Google Scholar 

  21. García de Abajo FJ (2007) Colloquium: light scattering by particle and hole arrays. Rev Mod Phys 79:1267–1290

    Article  Google Scholar 

  22. Lamprecht B, Schider G, Lechner RT, Ditlbacher H, Krenn JR, Leitner A, Aussenegg FR (2000) Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance. Phys Rev Lett 84(20):4721–4724

    Article  CAS  Google Scholar 

  23. Hicks EM, Zou S, Schatz GC, Spears KG, Van Duyne RP, Gunnarsson L, Rindzevicius T, Kasemo B, Käll M (2005) Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. Nano Lett 5(6):1065–1070

    Article  CAS  Google Scholar 

  24. Kravets VG, Schedin F, Grigorenko AN (2008) Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Phys Rev Lett 101(8):087403

    Article  CAS  Google Scholar 

  25. Auguié B, Barnes WL (2008) Collective resonances in gold nanoparticle arrays. Phys Rev Lett 101(14):143902

    Article  Google Scholar 

  26. Vecchi G, Giannini V, Rivas JG (2009) Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas. Phys Rev Lett 102(14):146807

    Article  CAS  Google Scholar 

  27. Fano U (1961) Effects of configuration interaction on intensities and phase shifts. Phys Rev 124(6):1866–1878

    Article  CAS  Google Scholar 

  28. Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9(9):707–715

    Article  Google Scholar 

  29. Miroshnichenko AE, Flach S, Kivshar YS (2010) Fano resonances in nanoscale structures. Rev Mod Phys 82(3):2257–2298

    Article  CAS  Google Scholar 

  30. Kobayashi K, Aikawa H, Katsumoto S, Iye Y (2002) Tuning of the Fano effect through a quantum dot in an Aharonov-Bohm interferometer. Phys Rev Lett 88(25):256806

    Article  Google Scholar 

  31. Rybin MV, Khanikaev AB, Inoue M, Samusev KB, Steel MJ, Yushin G, Limonov MF (2009) Fano resonance between Mie and Bragg scattering in photonic crystals. Phys Rev Lett 103(2):023901

    Article  CAS  Google Scholar 

  32. Chen J, Shen Q, Chen Z, Wang QG, Tang CJ, Wang ZL (2012) Multiple Fano resonances in monolayer hexagonal non-close-packed metallic shells. J Chem Phys 136(21):214703

    Article  Google Scholar 

  33. Chen J, Xu RQ, Liu ZQ, Tang CJ, Chen Z, Wang ZL (2013) Fabrication and infrared-transmission properties of monolayer hexagonal-close-packed metallic nanoshells. Opt Commun 297:194–197

    Article  CAS  Google Scholar 

  34. Pasquale AJ, Reinhard BM, Negro LD (2011) The near-field properties of nanoplasmonic necklaces have been optimized for plasmon-enhanced spectroscopy and sensing. ACS Nano 5(8):6578–6585

    Article  CAS  Google Scholar 

  35. Liu N, Tang ML, Hentschel M, Giessen H, Alivisatos AP (2011) Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat Mater 10(8):631–636

    Article  CAS  Google Scholar 

  36. Yannopapas V, Modinos A, Stefanou N (1999) Optical properties of metallodielectric photonic crystals. Phys Rev B 60(8):5359–5365

    Article  CAS  Google Scholar 

  37. Vecchi G, Giannini V, Gómez Rivas J (2009) Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas. Phys Rev B 80(20):201401(R)

    Article  Google Scholar 

  38. Chen J, Xu RQ, Mao P, Liu YJ, Tang CJ, Liu JQ, Zhang LB (2014) Fanolike resonance in light transmission through a planar array of silver circular disks. Mater Lett 136:205–208

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would acknowledge financial supports from the National Natural Science Foundation of China (Grant Nos. 11304159, 11104136, 11264021, 61372045), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20133223120006, 20123223120003), the Natural Science Foundation of Zhejiang Province (Grant No. LY14A040004), and the Scientific Research Foundation of Nanjing University of Posts and Telecommunications (Grant No. NY213023). This research was also supported by the Technological Innovation Funds for Technology-Based Small and Medium-Sized Enterprises of Jiangsu Province (Grant No. BC2014138).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Chen or Chaojun Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Xu, R., Mao, P. et al. Realization of Fanolike Resonance Due to Diffraction Coupling of Localized Surface Plasmon Resonances in Embedded Nanoantenna Arrays. Plasmonics 10, 341–346 (2015). https://doi.org/10.1007/s11468-014-9814-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9814-0

Keywords

Navigation