Skip to main content
Log in

A novel cooling system based on heat pipe with fan for thermal management of high-power LEDs

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

A novel cooling system based U-shaped heat pipe with fan is proposed firstly to solve thermal management of high-power LEDs, and the thermal performance of the proposed cooled device is investigated based on the experiment combined with the finite element analysis (FEA). The experimental results show that the substrate temperature is only 25 °C when cooling by the combination of the heat pipe and fan. FEA model of the cooling system is established, and its effectiveness is validated with the experimental ones. FEA simulation results indicate that the LEDs junction temperature can get very good control as long as appropriate ambient temperature and volume flow rate, and the LED power cooled by the system can reach to 120 W while the total power consumption of cooling system is only 1.58 W. The investigation demonstrates that the U-shaped heat pipe cooling device has excellent cooling capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. N. Holonyak, Is the light emitting diode (LED) an ultimate lamp? Am. J. Phys. 68(9), 864–866 (2000)

    Article  ADS  Google Scholar 

  2. J.J. Chen, K.L. Huang, P.C. Lin, Computer modeling of a fiber and light emitting diode based vehicle headlamp. Opt. Eng. 49(7), 073002–073008 (2010)

    Article  ADS  Google Scholar 

  3. C.C. Hsieh, Y.H. Li, C.C. Hung, Modular design of the LED vehicle projector headlamp system. Appl. Opt. 52(21), 5221–5229 (2013)

    Article  ADS  Google Scholar 

  4. D. Jang, S.J. Park, S.J. Yook, K.S. Lee, The orientation effect for cylindrical heat sinks with application to LED light bulbs. Int. J. Heat Mass Transf. 71, 496–502 (2014)

    Article  Google Scholar 

  5. L. Kongjing, T. Gui Yun, C. Liang, Y. Aijun, C. Wenping, S. Crichton, State detection of bond wires in IGBT modules using eddy current pulsed thermography. IEEE Trans. Power Electron. 29(9), 5000–5009 (2014)

    Article  Google Scholar 

  6. L. Junhui, W. Duo, D. Ji An, H. Hu, X. Yang, Z. Wenhui, Structural design and control of a small-MRF damper under 50 N soft-landing applications. IEEE Trans. Industr. Inf. 11(3), 612–619 (2015)

    Article  Google Scholar 

  7. X.C. Liu, Y.M. Xiao, K. Inthavong, J.Y. Tu, Experimental and numerical investigation on a new type of heat exchanger in ground source heat pump system. Energ. Effi. 8(5), 845–857 (2015)

    Article  Google Scholar 

  8. J.H. Li, L. Han, J.A. Duan, J. Zhong, Microstructural characteristics of Au/Al bonded interfaces. Mater. Charact. 58(2), 103–107 (2007)

    Article  Google Scholar 

  9. L. Junhui, L. Linggang, M. Bangke, D. Luhua, H. Lei, Dynamics features of Cu-wire bonding during overhang bonding process. IEEE Electron Device Lett. 32(12), 1731–1733 (2011)

    Article  ADS  Google Scholar 

  10. J. Li, L. Liu, L. Deng, B. Ma, F. Wang, L. Han, Interfacial microstructures and thermodynamics of thermosonic Cu-wire bonding. IEEE Electron Device Lett. 32(10), 1433–1435 (2011)

    Article  ADS  Google Scholar 

  11. J. Li, X. Zhang, L. Liu, L. Han, Interfacial characteristics and dynamic process of Au-and Cu-wire bonding and overhang bonding in microelectronics packaging. J. Microelectromech. Syst. 22(3), 560–568 (2013)

    Article  Google Scholar 

  12. Y. Tang, X.R. Ding, B.H. Yu, Z.T. Li, B. Liu, A high power LED device with chips directly mounted on heat pipes. Appl. Therm. Eng. 66(1–2), 632–639 (2014)

    Article  Google Scholar 

  13. D.M. Li, G.Q. Zhang, K.L. Pan, X.S. Ma, L. Liu, J.X. Cao, Numerical simulation on heat pipe for high power LED multi-chip module packaging, in 2009 International Conference on Electronic Packaging Technology & High Density Packaging (Icept-Hdp 2009) (2009), pp. 317–321

  14. N. Narendran, Y. Gu, Life of LED-based white light sources. J. Disp. Technol. 1(1), 167–171 (2005)

    Article  ADS  Google Scholar 

  15. H. Xu, I. Qin, H. Clauberg, B. Chylak, V.L. Acoff, Behavior of palladium and its impact on intermetallic growth in palladium-coated Cu wire bonding. Acta Mater. 61(1), 79–88 (2013)

    Article  Google Scholar 

  16. J. Li, W. Wang, Y. Xia, H. He, W. Zhu, The soft-landing features of a micro-magnetorheological fluid damper. Appl. Phys. Lett. 106(1), 014104 (2015)

    Article  ADS  Google Scholar 

  17. H.Y. So, A.P. Pisano, Micromachined passive phase-change cooler for thermal management of chip-level electronics. Int. J. Heat Mass Transf. 89, 1164–1171 (2015)

    Article  Google Scholar 

  18. J. Li, W. Fuliang, L. Han, J. Zhong, Theoretical and experimental analyses of atom diffusion characteristics on wire bonding interfaces. J. Phys. D Appl. Phys. 41(13), 135303 (2008)

    Article  ADS  Google Scholar 

  19. J. Li, B. Ma, R. Wang, L. Han, Study on a cooling system based on thermoelectric cooler for thermal management of high-power LEDs. Microelectron. Reliab. 51(12), 2210–2215 (2011)

    Article  Google Scholar 

  20. S.-H. Yu, K.-S. Lee, S.-J. Yook, Optimum design of a radial heat sink under natural convection. Int. J. Heat Mass Transf. 54(11–12), 2499–2505 (2011)

    Article  MATH  Google Scholar 

  21. S.S. Hsieh, Y.F. Hsu, M.L. Wang, A microspray-based cooling system for high powered LEDs. Energy Convers. Manag. 78, 338–346 (2014)

    Article  Google Scholar 

  22. S.F. Sufian, Z.M. Fairuz, M. Zubair, M.Z. Abdullah, J.J. Mohamed, Thermal analysis of dual piezoelectric fans for cooling multi-LED packages. Microelectron. Reliab. 54(8), 1534–1543 (2014)

    Article  Google Scholar 

  23. J.H. Li, B.K. Ma, R.S. Wang, L. Han, Study on a cooling system based on thermoelectric cooler for thermal management of high-power LEDs. Microelectron. Reliab. 51(12), 2210–2215 (2011)

    Article  Google Scholar 

  24. J. Li, X. Zhang, C. Zhou, J. Zheng, D. Ge, W. Zhu, New applications of an automated system for high-power LEDs. IEEE/ASME Trans. Mechatron. 21(2), 1035–1042 (2016)

    Article  Google Scholar 

  25. X. Luo, W. Xiong, T. Cheng, S. Liu, Temperature estimation of high-power light emitting diode street lamp by a multi-chip analytical solution. IET Optoelectron. 3(5), 225–232 (2009)

    Article  Google Scholar 

  26. T.J. Lu, Thermal management of high power electronics with phase change cooling. Int. J. Heat Mass Transf. 43(13), 2245–2256 (2000)

    Article  MATH  Google Scholar 

  27. J.C. Wang, Thermal investigations on LED vapor chamber-based plates. Int. Commun. Heat Mass Transfer 38(9), 1206–1212 (2011)

    Article  Google Scholar 

  28. R. Baby, C. Balaji, Thermal management of electronics using phase change material based pin fin heat sinks. J. Phys: Conf. Ser. 395(1), 012134 (2012)

    Google Scholar 

  29. J. Li, F. Lin, D.M. Wang, W.K. Tian, A loop-heat-pipe heat sink with parallel condensers for high-power integrated LED chips. Appl. Therm. Eng. 56(1–2), 18–26 (2013)

    Article  Google Scholar 

  30. Y.H. Ye, L.H. Saw, Y.X. Shi, A.A.O. Tay, Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging. Appl. Therm. Eng. 86, 281–291 (2015)

    Article  Google Scholar 

  31. D. Lee, S.W. Cho, Y.J. Kim, Numerical study on the heat dissipation characteristics of high-power LED module. Sci. China Technol. Sci. 56(9), 2150–2155 (2013)

    Article  Google Scholar 

  32. K.C. Yung, H. Liem, H.S. Choy, Z.X. Cai, Thermal investigation of a high brightness LED array package assembly for various placement algorithms. Appl. Therm. Eng. 63(1), 105–118 (2014)

    Article  Google Scholar 

  33. Y. Lai, N. Cordero, F. Barthel, F. Tebbe, J. Kuhn, R. Apfelbeck, D. Würtenberger, Liquid cooling of bright LEDs for automotive applications. Appl. Therm. Eng. 29(5–6), 1239–1244 (2009)

    Article  Google Scholar 

  34. K.S. Yang, C.H. Chung, M.T. Lee, S.B. Chiang, C.C. Wong, C.C. Wang, An experimental study on the heat dissipation of LED lighting module using metal/carbon foam. Int. Commun. Heat Mass Transfer 48, 73–79 (2013)

    Article  Google Scholar 

  35. R. Ranjan, J.Y. Murthy, S.V. Garimella, U. Vadakkan, A numerical model for transport in flat heat pipes considering wick microstructure effects. Int. J. Heat Mass Transf. 54(1–3), 153–168 (2011)

    Article  MATH  Google Scholar 

  36. M. Rahmat, P. Hubert, Two-phase simulations of micro heat pipes. Comput. Fluids 39(3), 451–460 (2010)

    Article  MATH  Google Scholar 

  37. R.S. Prasher, A simplified conduction based modeling scheme for design sensitivity study of thermal solution utilizing heat pipe and vapor chamber technology. J. Electron. Packag. 125(3), 378–385 (2003)

    Article  Google Scholar 

  38. X.J. Zhao, Y.X. Cai, J. Wang, X.H. Li, C. Zhang, Thermal model design and analysis of the high-power LED automotive headlight cooling device. Appl. Therm. Eng. 75, 248–258 (2015)

    Article  Google Scholar 

  39. J.H. Choi, M.W. Shin, Thermal investigation of LED lighting module. Microelectron. Reliab. 52(5), 830–835 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 51 275536), the China High Technology R&D Program 973 (No. 2015CB057206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhui Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, C., Tian, Q., Zhou, C. et al. A novel cooling system based on heat pipe with fan for thermal management of high-power LEDs. J Opt 46, 269–276 (2017). https://doi.org/10.1007/s12596-016-0379-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-016-0379-5

Keywords

Navigation