Skip to main content
Log in

Assessment of Groundwater and Surface Soil using Multivariate Statistical Techniques and Contamination Indices: A Case Study of Gurugram Millennium City, Haryana, India

  • Original Article
  • Published:
Journal of the Geological Society of India

Abstract

Pollution of various environmental components, such as air, water, and soil, is caused by industrialization and urbanization in urban agglomerates. This study provides information about groundwater quality and the levels of heavy metals in the surface soils of Gurugram city. The groundwater and soil samples were analyzed for various chemical parameters. Heavy metals in groundwater and soil were measured using atomic absorption spectrophotometer (AAS). Groundwater samples show higher electrical conductivity (EC), bicarbonates (HCO3−), and chlorides (Cl). Water quality index (WQI) indicates that groundwater is not suitable for drinking purposes. Most of the groundwater samples surpassed the prescribed limits for heavy metals. While in the case of soil, Cd, Ni and Cr were found above the average background value for soils. Contamination factors (CF) and Pollution load index (PLI) for various heavy metals in soil were found to vary from 0.006 to 20.9 and 0.64 to 1.93, respectively. The 70% of samples found with PLI >1, indicate deterioration of soil quality. Three soil samples have a high ecological risk index (ERI) with values of more than 600. Average value of geo-accumulation index (Igeo) varies in the order Cd>Pb>Cu>Zn>Ni>Cr>Fe with average value 3.43, 1.73, 0.86, 0.029, −.23, −1.2 and −7.14, respectively. Principal component analysis (PCA), a multivariate statistical technique, shows that the first three principal components (PC) account for 84.99% of the variance in groundwater samples. In soil samples, the first two PCs account for 76.97% of the variance. Hierarchical cluster analysis (HCA) shows three clusters for groundwater samples and two clusters for soil samples. The study area shows higher pollution levels and needs an improved environmental management plan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • APHA (2005) Standard Methods for the Examination of Water and Wastewater. 21st edition. American Public Health Association, Washington DC, USA.

    Google Scholar 

  • Babiker, S.I., Mohamed, A.A., Mohamed, T.H. (2007) Assessing groundwater quality using GIS. Water Resour Manag., v.21, pp.699–715

    Article  Google Scholar 

  • Barakat, A., Baghdadi, M.E., Rais, J., Aghezzaf, B., Slassi, M. (2016) Assessment of spatial and seasonal water quality variation of Our Er Rbia river (Morocco) using multivariate statistical techniques. Internat. Soil Water Conserv. Res., v.4(4), pp.284–292. doi:https://doi.org/10.1016/j.iswcr.2016.11.002.

    Article  Google Scholar 

  • BIS (2012) Indian standard specification for drinking water, IS:10500 [S]. New Delhi: Bureau of Indian Standards.

    Google Scholar 

  • Bouteraa, O., Mebarki, A., Bouaicha, F., Nouaceur, Z., Laignel, B. (2019) Groundwater quality assessment using multivariate analysis, geostatistical modeling, and water quality index (WQI): a case of study in the Boumerzoug-El Khroub valley of Northeast Algeria. Acta Geochimica., v.38(6), pp.796–814.

    Article  Google Scholar 

  • CGWB (1995) Ground Water Resources of India, Gurgaon district at a glance. Central Ground Water Board, New Delhi. http://cgwb.gov.in/DistrictProfile/Haryana/Gurgaon.pdf

    Google Scholar 

  • Chakrapany, R.A. (1981) Hydrology of Gurgaon District, Haryana. Central Ground Water Board, Ministry of Irrigation, Govt. of India.

  • Cook, N., Hendershot, W.H. (1996) The problem of establishing ecologically-based soil quality criteria: the case of lead. Canadian Jour. Soil Scien., v.76, pp.335–342.

    Article  Google Scholar 

  • Defo, C., Yerima, B.P.K., Noumsi, I.M.K., Bemmo, N. (2015) Assessment of heavy metals in soils and groundwater in an urban watershed of Yaounde (Cameroon-West Africa). Environ. Monit. Assess., v.187(3), pp.1–17.

    Article  Google Scholar 

  • Gao, X., Chen, C.T.A. (2012) Heavy metal pollution status in surface sediments of the coastal Bohai Bay. Water Res., v.46(6), pp.1901–1911.

    Article  Google Scholar 

  • Greenwood, N.N., Earnshaw, A. (2012) Chemistry of the Elements. Elsevier

  • Hakanson, L. (1980) An ecological risk index for aquatic pollution control. A sedimentological approach. Water research., v. 14(8), pp.975–1001. doi:https://doi.org/10.1016/0043-1354(80)90143-8.

    Article  Google Scholar 

  • Horton, R.K. (1965) An index number system for rating water quality. Jour. Water Pollut. Control. Fed., v.37(3), pp.300–306.

    Google Scholar 

  • Howard, R.L., Schrier, R.W. (1990) A unifying hypothesis of sodium and water regulation in health and disease. Hormone Res., v.34, pp.118–123.

    Article  Google Scholar 

  • Islam, S., Ahmed, K., Masunaga, S. (2015) Potential ecological risk of hazardous elements in different land-use urban soils of Bangladesh. Sci. Total Environ., v.512, pp.94–102. doi:https://doi.org/10.1016/j.scitotenv.2014.12.100

    Article  Google Scholar 

  • Jiang, Y., Chao, S., Liu, J., Yang, Y., Chen, Y., Zhang, A., Cao, H. (2017) Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere., v.168. pp.1658–1668.

    Article  Google Scholar 

  • Kabata-Pendias, A., Pendias, H. (2001). Trace elements in soils and plants. 3rd edition. CRC press Boca Raton, Florida, USA.

    Google Scholar 

  • Kangabam, R.D., Bhoominathan, S.D., Kanagaraj, S., Govindaraju, M. (2017) Development of a water quality index (WQI) for the Loktak Lake in India. Appl. Water Sci., v.7(6), pp.2907–2918.

    Article  Google Scholar 

  • Kanmani, S., Gandhimathi, R. (2013) Investigation of physicochemical characteristics and heavy metal distribution profile in groundwater system around the open dump site. Appl. Water Sci., v.3(2), pp.387–399.

    Article  Google Scholar 

  • Kumar, D., Malik, D.S., Kumar, N., Gupta, N., Gupta, V. (2020) Spatial changes in water and heavy metal contamination in water and sediment of river Ganga in the river belt Haridwar to Kanpur. Environ. Geochem. Health., v.42(7), pp.2059–2079.

    Article  Google Scholar 

  • Kumar, S., Rajesh, V., Khan, N. (2022). Evaluation of groundwater quality in Ramanathapuram district, using water quality index (WQI). Modeling Earth Systems and Environment, v.8, pp.35–45.

    Article  Google Scholar 

  • Liu, W.H., Zhao, J.Z., Ouyang, Z.Y., Söderlund, L., Liu, G.H. (2005) Impacts of sewage irrigation on heavy metal distribution and contamination in Beijing, China. Environ. Internat., v.31(6), pp.805–812.

    Article  Google Scholar 

  • Lohani, M. (2014) Impact of landuse change on hydrology: a case study of Gurgaon City. Internat. Jour. Environ. Res. Dev., v.4(3), pp.247–252.

    Google Scholar 

  • Malik, V.K., Singh, R.K., Singh, S.K. (2010) Impact of urbanization on ground water of Gurgaon District, Haryana, India. Internat. Jour. Rural Develop. Manag. Stud., v.5(1), pp.45–57.

    Google Scholar 

  • Martin, J.M., Meybeck, M. (1979) Elemental mass-balance of material carried by major world rivers. Marine Chemistry., v.7(3), pp.173–206. doi:https://doi.org/10.1016/0304-4203(79)90039-2.

    Article  Google Scholar 

  • Muller, G. (1969) Index of geoaccumulation in sediments of the Rhine River. Geojournal, v.2, pp.108–118.

    Google Scholar 

  • Nasirian, M. (2007) A new water quality index for environmental contamination contributed by mineral processing: a case study of Amang (Tin Tailing) processing activity.

  • Oluduro, A.O., Adewoye, B.I. (2007) Efficiency of moringa Oleifer Sead extract on the microflora of surface and ground water. Jour. Plant Sci., v.6, pp.438–453.

    Google Scholar 

  • Panghal, V., Bhateria, R. (2020) A multivariate statistical approach for monitoring of groundwater quality: a case study of Beri block, Haryana, India. Environ. Geo Health., v.43(7), pp.2615–2629.

    Article  Google Scholar 

  • Panghal, V., Sharma, P., Mona, S., Bhateria, R. (2021). Determining ground-water quality using indices and multivariate statistical techniques: a study of Tosham block, Haryana, India. Environ. Geochem. Health., pp.1–15.

  • Panghal, V., Singh, A., Kumar, R., Kumari, G., Kumar, P., Kumar, S. (2021) Soil heavy metals contamination and ecological risk assessment in Rohtak urban area, Haryana (India). Enviro Earth Sci., v.80(21), pp.1–20. doi:https://doi.org/10.1007/s12665-021-10028-7.

    Google Scholar 

  • Papagiannis, I., Kagalou, I., Leonardos, J., Petridis, D., Kalfakakou, V. (2004). Copper and zinc in four freshwater fish species from Lake Pamvotis (Greece). Environ. Internat., v.30(3), pp.357–362.

    Article  Google Scholar 

  • Patil, B., Pinto, V.B., Govindaraju, S.M., Hebbalu, T., Bhat V.V.S, Kannanur L.N. (2020) Multivariate statistics and water quality index (WQI) approach for geochemical assessment of groundwater quality—a case study of Kanavi Halla Sub-Basin, Belagavi, India. Environ. Geochem. Health., v.42(9), pp.2667–2684.

    Article  Google Scholar 

  • Rabinove, C.J., Long Ford, R.H., BrookHart, J.W. (1958) Saline water resource of North Dakota. USGS Water Supply Paper, v.1428, pp.72.

    Google Scholar 

  • Rajaganapathy, V., Xavier, F., Sreekumar, D., Mandal, P.K. (2011) Heavy metal contamination in soil, water and fodder and their presence in livestock and products: a review. Jour. Environ. Sci. Tech., v.4(3), pp.234–249.

    Article  Google Scholar 

  • Ramakrishnaiah, C.R., Sadashivaiah, C., Ranganna, G. (2009) Assessment of water quality index for the groundwater in Tumkur Taluk, Karnataka State, India. E-Journal Chemistry, v.6(2), pp.523–530.

    Article  Google Scholar 

  • Rao, N.S., Rao, J.P., Devadas, D.J., Rao, K.V.S. (2002) Hydrogeochemistry and groundwater quality in a developing urban environment of a semi-arid region, Guntur, Andhra Pradesh. Jour. Geol. Soc. India, v.59(2), pp.159–166.

    Google Scholar 

  • Shayler, H., McBride, M., Harrison, E. (2009) Sources and impacts of contaminants in soils. Cornell Waste Management Institute, Rice hall, Itheca. https://hdl.handle.net/1813/14282

  • Simoes, d.S.F., Moreira, A.B., Bisinoti, M.C., Gimenez, S.M.N., Yabe, M.J.S. (2008). Water quality index as a simple indicator of aquaculture effects on aquatic bodies. Ecological Indicators., v.8(5), pp.476–484.

    Article  Google Scholar 

  • Suthar, S., Bishnoi, P., Singh, S., Mutiyar, P.K., Nema, A.K., Patil, N.S. (2009) Nitrate contamination in groundwater of some rural areas of Rajasthan, India. Jour Hazard. Mate., v.171(1–3), pp.189–199.

    Article  Google Scholar 

  • Tomlinson, D.L., Wilson, J.G., Harris, C.R., Jeffrey, D.W. (1980) Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresunters., v.33(1), pp.566–575. doi:https://doi.org/10.1007/BF02414780.

    Article  Google Scholar 

  • Van Loon, J.C. (1985). Selected methods of trace metal analysis: biological and environmental samples. John Wiley and Sons.

  • Verma, A., Kumar, R., Yadav, S. (2020) Distribution, pollution levels, toxicity, and health risk assessment of metals in surface dust from Bhiwadi industrial area in North India. Human and Ecological Risk Assessment: An International Jour., v.26(8), pp.2091–2111.

    Article  Google Scholar 

  • Walkley, A., Black, I.A. (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci., v.37(1), pp.29–38.

    Article  Google Scholar 

  • Wedepohl, K.H. (1995) The composition of the continental crust. Geochim. Cosmochim Acta, v.59(7), pp.1217–1232. doi:https://doi.org/10.1016/0016-7037(95)00038-2.

    Article  Google Scholar 

  • WHO (1996) Permissible limits of heavy metals in soil and plants. Geneva, Switzerland

Download references

Acknowledgment

The authors are thankful to Dean Students’ Welfare, Maharshi Dayanand University for providing a minor research project under Dr Radha Krishanan Foundation Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panghal, V., Bhateria, R., Kumar, R. et al. Assessment of Groundwater and Surface Soil using Multivariate Statistical Techniques and Contamination Indices: A Case Study of Gurugram Millennium City, Haryana, India. J Geol Soc India 99, 430–437 (2023). https://doi.org/10.1007/s12594-023-2327-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-023-2327-8

Navigation