Skip to main content
Log in

Ubiquitous Chemical Signature in Khondalites of Eastern Ghats Granulite Belt, a Possible Explanation

  • Original Article
  • Published:
Journal of the Geological Society of India

Abstract

Khondalite, iteratively entangled with granitic leucosome, overwhelmingly represent a suprasolidus assemblage and a gross restitic signature, with negative K, Rb and Sr spikes, positive Cr spike, moderately enriched REE pattern and strong negative Eu anomaly. Moderate K/Rb ratio and weak or no HREE depletion of khondalite are ascribed to high grade metamorphism with dehydration melting signature, keeping aside feldspar and garnet as peritectic phase. Pristine geochemical sedimentary character of khondalite signifies a sand-shale alternation deposited in a passive margin basin, with large degree of reworking, and felsic igneous provenance. Age of sedimentation of khondalite is close to 1400 Ma. Anomalously high iron content of the khondalites could be attributed to the fact that pristine sediments of khondalite represent an anaerobic sediment above the chemocline, between oxic and anoxic sediments, originated in passive margin setting with a moderate to weak supply of detritus, in gradual proliferation of multicellular organism during Meso-Proterozoic time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bahlburg, H. (1998) The geochemistry and provenance of Ordovician turbidites in the Argentine Puna. In: R.J. Pankhurst and C.W. Rapela (Eds.), The ProtoAndean Margin of Gondwana. Geol. Soc. London Spec. Publ., no.142, pp.127–142.

  • Banerjee, A., Slowakiewicz, M., Saha., D. (2021) On the oxygenetaion of the Archaean and Proterozoic Oceans. Geol. Mag., pp.1–8. doi:https://doi.org/10.1017/S0016756820001363

  • Berner, R.A. (1971) Principles of Chemical Sedimentology. McGraw-Hill. 240p.

  • Bhattacharya, S. (1996) Eastern Ghats granulites terrain of India: an overview. Jour. Southeast Asian Earth Sci., v.14, pp.165–174

    Article  Google Scholar 

  • Bhattacharya, S., Basei, M., Kar, R. (2013) Early Mesoproterozoic thermal event in the Eastern Ghats Province, India: U-Pb isotopic evidence from supracrustal rocks. Inter.. Jour. Advan. Earth Environ. Sci., v.2, pp.43–59.

    Google Scholar 

  • Bhattacharya, S., Chaudhary, A.K., Basei,, M. (2012) Original nature and source of khondalites in the Eastern Ghats Belt, India. Geol. Soc. London Spec. Publ. on Paleoproterozoics of India, no.365, pp.147–159.

  • Bhattacharya, S., Chaudhary, A. (2010) Secular evolution of continental crust: Recorded from massif-type charnockites of the Eastern Ghats Belt, India. Natural Sci., v.2, pp.1079–1084.

    Article  Google Scholar 

  • Bhattacharya, S., Das, P., Chaudhary, A. K., Saw, A.K. (2010) Mafic granulite xenoliths in the Eastern Ghats granulite belt: Implications for lower crustal processes in the south-eastern Indian peninsula. Indian Jour. Geol., v.80, pp.55–69.

    Google Scholar 

  • Bhattacharya, S., Kar, R. (2002) High-temperature dehydration melting and decompressive P-T path in a granulite complex from the Eastern Ghats, India. Contrib. Mineral. Petrol., v.143, pp.175–191.

    Article  Google Scholar 

  • Bhattacharya, S., Sen, S. K., Acharya, A. (1994) The structural setting of the Chilka Lake granulite-migmatite anorthosite suite with emphasis on the time relation of charnockites. Precambrian Res., v.66, pp.393–409.

    Article  Google Scholar 

  • Bhui, U.K., Sengupta, P., Sengupta, P. (2007) Phase relations in mafic dykes and their host rocks from Kondapalle, Andhra Pradesh, India: implications for the time-depth trajectory of the Palaeoproterozoic (late Archaean?) granulites from southern Eastern Ghats Belt. Precambrian Res., v.156, pp.153–174.

    Article  Google Scholar 

  • Bohlen S.R., Wall V.J., Boettcher A.L. (1983) Experimental investigations and geological applications of equilibria in the system FeO−TiO2−Al2O3−SiO2−H2O. Am. Mineral., v.68, pp.1049–1058.

    Google Scholar 

  • Chacko, T., Ravindra Kumar, G.R., Newton RC. (1987) Metamorphic P-T Conditions of the Kerala (South India) Khondalite Belt, a Granulite Facies Supracrustal Terrain. Jour. Geo., v.3, pp.343–358.

    Article  Google Scholar 

  • Cooray P.G. (1962) Charnockites and their associated gneisses in the Precambrian of Ceylon. Quart. Jour. Geol. Soc., v.118, pp.239–266.

    Article  Google Scholar 

  • Das E, Karmakar S., Chatterjee S., Karmakar S. and Sengupta P. (2020) First comprehensive characterization of osumilite from India (Eastern Ghats Province): Physicochemical chrateristics. Stability of mineral and its breakdown products. Lithos, v.352–353, pp.1–10.

    Google Scholar 

  • Dasgupta, S., Bose, S., Das. K. (2012) Tectonic evolution of the Eastern Ghats Belt, India. Precambrian Res., v.227, pp.247–258.

    Article  Google Scholar 

  • Farquhar, J., Zerkle, A. L., Bekker, A. (2011) Geological constraints on the origin of oxygenic photosynthesis. Photosynth. Res., v.107, pp.11–36.

    Article  Google Scholar 

  • Faure, G., Mensing, T.M. (2005) Isotopes Principles and Applications. 3rd Edition. John Wiley & Sons. 897p.

  • Gray, C.M. (1977) Geochronology of granulite facies gneisses in the western Musgrave Block, Central Australia. Jour. Geol. Soc. Australia, v.25, pp.403–414.

    Article  Google Scholar 

  • Guangyu, Huang, Shujuan, Jiao, Jinghui, Guo, Peng, Peng, Dan, Wang, Peng, Liu (2016) P-T-t constraints of the Barrovian-type metamorphic series in the Khondalite belt of the North China Craton: Evidence from phase equilibria modeling and zircon U-Pb geochronology. Precambrian Res., v.283, pp.125–143

    Article  Google Scholar 

  • Harley S. L., Hensen., B. J. (1990) Archaean and Proterozoic high-grade terranes of East Antarctica (40–80°E): a case study of diversity in granulite facies metamorphism. High-temperature Metamorphism and Crustal Anatexis, pp.320–370

  • Harley, S. L. (1992) Proterozoic Granulite Terranes. Developments in Precambrian Geology, v.10, pp.301–359

    Article  Google Scholar 

  • Henry, D. J., Guidotti C. V., Thomson J. A. (2005) The Ti-saturation surface for low-to-medium pressure metapelitic biotite: implications for geothermometry and Ti-substitution mechanisms. Amer. Mineral. v.90, pp.316–328.

    Article  Google Scholar 

  • Holdaway, M.J. (2000) Application of new experimental and garnet Margules data to the garnet-biotite geothermometer. Amer. Mineral., v.85, pp.881–892.

    Article  Google Scholar 

  • Hormann, P. K., Raith, M., Raase, P., Ackermand, D., Seifert, F., (1980) The granulite complex of Finnish Lappland: petrology and metamorphic conditions in the Ivalojoki-Inarijiirvi area. Geol. Surv. Finland Bull., v.308, pp.1–95.

    Google Scholar 

  • Jianghai, L. I., Kroner, A., Xianglin, Q., Brien, P.O. (2000) Tectonic Evolution of an Early Precambrian High Pressure Granulite Belt in the North China Craton. Acta Geologica Smica, v.74, pp.246–258.

    Article  Google Scholar 

  • Kar, R. (1995) Structural setting and post-granulite modification in an area in the northeastern sector of Eastern Ghats. Indian Jour. Geol. v.67, pp.273–281.

    Google Scholar 

  • Kar, R. (2007) Domainal fabric development, associated microstructures and P-T records attesting to polymetamorphism in a granulite complex of the Eastern Ghats granulite belt, India. Jour. Earth Syst. Sci., v.116, pp.21–35.

    Article  Google Scholar 

  • Kar, R. (2010) Melting experiments in the NCFMASH System at 8 Kbar: Implications for the origin of mafic granulite. Indian Jour. Geol,, v.80, pp.71–80.

    Google Scholar 

  • Kar, R. (2012) Generation of granitic plutons during crustal orogenesis: an example from the Eastern Ghats Granulite Belt, India. Jour. Geol. Soc. India, v.80, pp.653–666.

    Article  Google Scholar 

  • Kar, R. (2017) On the khondalites of Eastern Ghats granulite belt, India. Indian Jour. Geol., v.87, pp.5–18.

    Google Scholar 

  • Kar, R., Bhattacharya, S., Sheraton, J.W. (2003) Hornblende-dehydration melting in mafic rocks and the link between massif-type charnockite and associated granulites, Eastern Ghats Granulite Belt, India. Contrib. Mineral. Petrol., v.145, pp.707–729.

    Article  Google Scholar 

  • Korhonen, F.J., Saw, A.K., Clark, C., Brown, M., Bhattacharya, S. (2011) New constraints on UHT metamorphism in the Eastern Ghats Province through the application of phase equilibria modelling and in situ geochronology. Gondwana Res., v.20, pp.764–781.

    Article  Google Scholar 

  • Le Breton, N., Thompson, A. B., 1988. Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anataxis. Contrib. Mineral. Petrol., v.99, pp.226–237.

    Article  Google Scholar 

  • Mukhopadhyay, D., Basak, K. (2009) The Eastern Ghats Belt. A polycyclic granulite terrain. Jour. Geol. Soc. India. v.73, pp.489–518.

    Article  Google Scholar 

  • Ramakrishnan, M., Nanda. J.K., Augustine, P.F. (1998) Geological evolution of the Proterozoic EGMB. Geol. Surv. India, v.44, pp.1–21.

    Google Scholar 

  • Roser, B.P., Korsch, R.J. (1988) Provenance signatures of sandstonemudstone suites determined using discrimination function analysis of major element data. Chem. Geol., v.67, pp.119–139.

    Article  Google Scholar 

  • Sageman, B.B., Lyons, T.W. (2004) Geochemistry fine-grained sediments and sedimentary rocks. In: Mackenzie, F.T., Holland, H.D., Turekian, K.K. (Eds.). Treatise on Geochemistry, v.7, pp.115–158.

  • Sengupta, P., Dasgupta, S., Bhattacharya, P.K., Fukuoka, M., Chakraborti, S., Bhowmik, S. (1990) Petrotectonic imprints in the sapphirine granulites from Anantagiri, Eastern Ghats mobile belt, India. Jour. Petrol., v.31, pp.71–996.

    Article  Google Scholar 

  • Shaw, R.K., Arima, M., Kagami, H., Fanning, C.A.M., Shiraishi, K., Motoyoshi, Y. (1997) Proterozoic events in the Eastern Ghats Granulite Belt, India: evidence from Rb−Sr, Sm−Nd systematics, and SHRIMP dating. Jour. Geol., v.105, pp.645–656.

    Article  Google Scholar 

  • Taylor, S.R., McLennan, S.M. (1985) The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publication, London. 312p.

    Google Scholar 

  • Upadhyay, D., Gerdes, A., Raith, M.M. (2009) Unraveling sedimentary provenance and tectonothermal history of high to ultra-high temperature metapelites using zircon and monazite chemistry: a case study from the Eastern Ghats Belt, India. Jour. Geol., v.117, pp.665–683.

    Article  Google Scholar 

  • Van Cappellen, P., Viollier, E., Roychoudhury, A., Lauren, C., Ellery, I. (1998) Biogeochemical cycles of manganese and iron at the oxicanoxic transition of a stratified marine basin (Orca Basin, Gulf of Mexico). Environ. Sci. Tech., v.32, pp.2931–2939.

    Article  Google Scholar 

  • Vielzeuf, D., Holloway, J.R. (1988) Experimental determination of the fluid-absent melting relations in the pelitic system. Consequences for crustal differentiation. Contrib. Mineral. Petrol., v.98, pp.257–276.

    Article  Google Scholar 

  • Walker J.C.G. (1977) Evolution of the atmosphere. Macmillan, New York. 318p.

    Google Scholar 

  • Warren, R.G. (1983) Metamorphic and tectonic evolution of granulites, Arunta Block, central Australia. Nature, v.305, pp.300–303.

    Article  Google Scholar 

Download references

Acknowledgement

The present work is the outcome of the DST project SR/S4/ES-381/2008. Financial support from the DST is thankfully acknowledged. Geochemical data are obtained from EPMA laboratory of GSI, CHQ, Kolkata, Wadia Institute of Himalayan Geology, Dehradun and University of Sao Paulo, Brazil. Help from these laboratories are thankfully acknowledged. Valuable suggestion by Prof. S. Bhattacharya of Geological Studies Unit, Indian Statistical Institute, Kolkata, on an earlier version of the manuscript is thankfully acknowledged. J. K. College, Purulia and Department of Geology, University of Calcutta provided the fundamental infrastructure to complete the work. Editorial help and assistance during field work by Research Scholars of Calcutta University, namely, Anwesha Ghosh, Kiranjit Singh, Sanchari Chatterjee and Sandip Choudhuri are thankfully acknowledged. Fruitful comments from anonymous reviewers helped a lot to upgrade the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajib Kar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kar, R. Ubiquitous Chemical Signature in Khondalites of Eastern Ghats Granulite Belt, a Possible Explanation. J Geol Soc India 99, 397–405 (2023). https://doi.org/10.1007/s12594-023-2323-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-023-2323-z

Navigation