Skip to main content

Advertisement

Log in

Sulphur Isotopic Evidence for Upwelling of Anoxic Deep Water as the Cause of End-Permian Mass Extinction from Guryul Ravine Permo-Triassic Boundary Section, Kashmir, India

  • Original Article
  • Published:
Journal of the Geological Society of India

Abstract

The Guryul ravine section in Kashmir, northern India represent archetypal Permian-Triassic Boundary (PTB) section, comprising conformable successions of mixed siliciclastic-carbonate sediments deposited in deep-shelf setting. Availability of high quality sedimentological and fossil records provides unique opportunity to examine the oceanic redox condition across PTB. Here, pyrite sulphur isotopic data, along with total organic carbon (TOC) and redox-sensitive trace elements (RSE) is reported from ∼28m thick succession across the PTB and attempted to investigate the reason behind the biotic crisis. The TOC and RSE data support an overall anoxic condition with a broad de-oxygenation trend with time. Majority of pyrite sulphur isotope data, considering ∼17‰ δ34S of contemporary ocean, show relatively low offset (\({{\bf{\Delta }}^{{\bf{34}}}}{{\bf{S}}_{{\bf{S}}{{\bf{O}}_{\bf{4}}}{\bf{ - }}{{\bf{H}}_{\bf{2}}}{\bf{S}}}}{\bf{ = 16}}{\bf{.4 - 22}}{\bf{.4}}\,{\bf{\% }}\)) between the marine sulphate and sulphide across the PTB, indicating low oceanic dissolved sulphate concentration (1.7–3.6 mM) and an overall oxygen deficient anoxic condition. A high magnitude (∼22 ‰) negative δ34S excursion event, observed in this study, broadly correlates with the first peak of mass-extinction at latest Permian H. praeparvus — C. meishanensis Zone. Upwelling of deep Ocean 34S-depleted sulphidic water onto the ocean surface layer best explains the negative δ34S excursion, and it is suggested that H2S poisoning is the main reason of mass mortality. The long term ocean stagnation and widespread ocean anoxia might have been caused by high-surface temperature related to gigantic release of greenhouse gases to the atmosphere during Siberian trap magmatism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Algeo, T., Henderson, C.M., Ellwood, B., Rowe, H., Elswick, E., Bates, S. and Freeman, K.H. (2012) Evidence for a diachronous Late Permian marine crisis from the Canadian Arctic region. GSA Bull., v.124, pp.1424–1448.

    Article  Google Scholar 

  • Algeo, T.J., Ellwood, B., Nguyen, T.K.T., Rowe, H. and Maynard, J.B. (2007b) The Permian—Triassic boundary at Nhi Tao, Vietnam: evidence for recurrent influx of sulfidic watermasses to a shallow-marine carbonate platform. Palaeogeo. Palaeoclimat. Palaeoeco., v.252(1–2), pp.304–327.

    Article  Google Scholar 

  • Algeo, T.J., Hannigan, R., Rowe, H., Brookfield, M., Baud, A., Krystyn, L. and Ellwood, B.B. (2007a) Sequencing events across the Permian—Triassic boundary, Guryul Ravine (Kashmir, India). Palaeogeo., Palaeoclimat., Palaeoeco., v.252, pp.328–346.

    Article  Google Scholar 

  • Algeo, T.J., Henderson, C.M., Tong, J., Feng, Q., Yin, H. and Tyson, R.V. (2013) Plankton and productivity during the Permian—Triassic boundary crisis: an analysis of organic carbon fluxes. Global and Planetary Change, v.105, pp.52–67.

    Article  Google Scholar 

  • Algeo, T.J., Kuwahara, K., Sano, H., Bates, S., Lyons, T., Elswick, E. and Maynard, J.B. (2011) Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian—Triassic Panthalassic Ocean. Palaeogeo., Palaeoclimat., Palaeoeco., v.308, pp.65–83.

    Article  Google Scholar 

  • Algeo, T.J., Luo, G.M., Song, H.Y., Lyons, T.W. and Canfield, D.E. (2015) Reconstruction of secular variation in seawater sulfate concentrations. Biogeosciences, v.12, pp.2131–2151.

    Article  Google Scholar 

  • Algeo, T.J., Marenco, P.J., and Saltzman, M.R. (2016) Co-evolution of oceans, climate, and the biosphere during the ‘Ordovician Revolution’: a review. Palaeogeo., Palaeoclimat., Palaeoeco., v.458, pp.1–11.

    Article  Google Scholar 

  • Algeo, T., Shen, Y., Zhang, T., Lyons, T., Bates, S., Rowe, H. and Nguyen, T.K.T. (2008) Association of 34S depleted pyrite layers with negative carbonate δ13C excursions at the Permian-Triassic boundary: Evidence for upwelling of sulfidic deep ocean water masses. Geochemistry, Geophysics, Geosystems, v.9.

  • Alroy, J. (2010) The shifting balance of diversity among major marine animal groups. Science, v.329, pp.1191–1194.

    Article  Google Scholar 

  • Baud, A., Atudorei, V. and Sharp, Z. (1996) Late Permian and Early Triassic evolution of the Northern Indian margin: carbon isotope and sequence stratigraphy. Geodinamica Acta, v.9(2–3), pp.57–77.

    Article  Google Scholar 

  • Berner, R.A. (2002) Examination of hypotheses for the Permo—Triassic boundary extinction by carbon cycle modeling. Proc. Nat. Acad. Sci., v.99, pp.4172–4177.

    Article  Google Scholar 

  • Bhat, G.M. and Bhat G.D. (1997) Stratigraphy and depositional environments of Late Permian carbonates, Kashmir Himalaya. Geology in South Asia-II, Geological Survey and Mines Bureau, Sri Lanka, Prof. Paper, v.7, pp.205–223.

    Google Scholar 

  • Blakey, R. (2016) Global Paleogeographic Maps. http://jan.ucc.nau.edu/∼rcb7/

  • Brookfield, M.E., Algeo, T.J., Hannigan, R., Williams, J., and Bhat, G.M. (2013) Shaken and stirred: seismites and tsunamites at the Permian-Triassic boundary, Guryul Ravine, Kashmir, India. Palaios, v.28(8), pp.568–582.

    Article  Google Scholar 

  • Brookfield, M.E., Shellnutt, J.G., Qi, L., Hannigan, R., Bhat, G.M. and Wignall, P.B. (2010) Platinum element group variations at the Permo—Triassic boundary in Kashmir and British Columbia and their significance. Chemical Geol., v.272(1–4), pp.12–19.

    Article  Google Scholar 

  • Brookfield, M.E., Stebbins, A.G., Williams, J.C., Wolbach, W.S., Hannigan, R. and Bhat, G.M. (2020) Palaeoenvironments and elemental geochemistry across the marine Permo-Triassic boundary section, Guryul Ravine (Kashmir, India) and a comparison with other North Indian passive margin sections. Depositional Record, v.6(1), pp.75–116.

    Article  Google Scholar 

  • Brookfield, M.E., Twitchett, R.J. and Goodings, C. (2003) Palaeoenvironments of the Permian—Triassic transition sections in Kashmir, India. Palaeogeo., Palaeoclimat., Palaeoeco., v.198(3–4), pp.353–371.

    Article  Google Scholar 

  • Brosse, M. Baud, A. Bhat, G. M. Bucher, H. Leu, M. Vennemann, T. and Goudemand, N. (2017) Conodont-based Griesbachian biochronology of the Guryul Ravine section (basal Triassic, Kashmir, India). Geobios, v.50(5–6), pp.359–387.

    Article  Google Scholar 

  • Burgess, S.D. and Bowring, S.A. (2015) High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction. Science Advances, v.1(7), pp.1500470.

    Article  Google Scholar 

  • Burgess, S.D., Muirhead, J.D. and Bowring S.A. (2017) Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nature Comm., v.8.1 pp.1–6.

    Google Scholar 

  • Burgess, S.D., Bowring, S. and Shen, S.Z. (2014) High-precision timeline for Earth’s most severe extinction. Proc. Nat. Acad. Sci., v.111(9), pp.3316–3321.

    Article  Google Scholar 

  • Canfield, D.E. and Teske, A. (1996) Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature, v.382(6587), pp.127–132.

    Article  Google Scholar 

  • Canfield, D.E. (1991) Sulfate reduction in deep-sea sediments. Amer. Jour. Sci., v.291(2), pp.177–188.

    Article  Google Scholar 

  • Canfield, D. E. (2001) Isotope fractionation by natural populations of sulfate-reducing bacteria. Geochim. Cosmochim. Acta, v.65(7), pp.1117–1124.

    Article  Google Scholar 

  • Chang, H., Chu, X., Feng, L. and Huang, J. (2009) Terminal Ediacaran anoxia in deep-ocean: Trace element evidence from cherts of the Liuchapo Formation, South China. Science in China Series D: Earth Sciences, v.52(6), pp.807–822.

    Article  Google Scholar 

  • Erwin, D.H. (1994) The Permo—Triassic extinction. Nature, v.367(6460), pp.231–236.

    Article  Google Scholar 

  • Ganai, J.A. and Rashid, S.A. (2019) Anoxia and fluctuating climate recorded from the Devonian—Carboniferous black shales, Tethys Himalaya, India: a multi-proxy approach. Internat. Jour. Earth Sci., v.108(3), pp.863–883.

    Article  Google Scholar 

  • Glikson, M., Chappell, B.W., Freeman, R.S. and Webber, E. (1985) Trace elements in oil shales, their source and organic association with particular reference to Australian deposits. Chemical Geol., v.53(1–2), pp.155–174.

    Article  Google Scholar 

  • Gomes, M.L. and Hurtgen, M.T. (2015) Sulfur isotope fractionation in modern euxinic systems: Implications for paleoenvironmental reconstructions of paired sulfate—sulfide isotope records. Geochim. Cosmochim. Acta, v.157, pp.39–55.

    Article  Google Scholar 

  • Gorjan, P., Kaiho, K., Kakegawa, T., Niitsuma, S., Chen, Z.Q., Kajiwara, Y. and Nicora, A. (2007) Paleoredox, biotic and sulfur-isotopic changes associated with the end-Permian mass extinction in the western Tethys. Chemical Geol., v.244(3–4), pp.483–492.

    Article  Google Scholar 

  • Habicht, K.S. and Canfield, D.E. (1997) Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments. Geochim. Cosmochim. Acta, v.61(24), pp.5351–5361.

    Article  Google Scholar 

  • Habicht, K.S., Gade, M., Thamdrup, B., Berg, P. and Canfield, D.E. (2002) Calibration of sulfate levels in the Archean Ocean. Science, v.298(5602), pp.2372–2374.

    Article  Google Scholar 

  • Hallam, A. (1989) The case for sea-level change as a dominant causal factor in mass extinction of marine invertebrates. Philosophical Trans. Royal Soc. London. B, Biological Sciences, v.325(1228), pp.437–455.

    Article  Google Scholar 

  • Hatch, J.R. and Leventhal, J.S. (1992) Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, USA. Chemical Geol., v.99(1–3), pp.65–82.

    Article  Google Scholar 

  • Holser, W.T., Schönlaub, H.P., Attrep, M., Boeckelmann, K., Klein, P., Magaritz, M. and Schmöller, R. (1989) A unique geochemical record at the Permian/Triassic boundary. Nature, v.337(6202), pp.39–44.

    Article  Google Scholar 

  • Huang, Y., Chen, Z.Q., Algeo, T.J., Zhao, L., Baud, A., Bhat, G.M. and Guo, Z. (2019). Two-stage marine anoxia and biotic response during the Permian—Triassic transition in Kashmir, northern India: pyrite framboid evidence. Global and Planetary Change, v.172, pp.124–139.

    Article  Google Scholar 

  • Huerta-Diaz, M.A. and Morse, J.W. (1992) Pyritization of trace metals in anoxic marine sediments. Geochim. Cosmochim. Acta, v.56(7), pp.2681–2702.

    Article  Google Scholar 

  • Jenkyns, H. C. (2010) Geochemistry of oceanic anoxic events. Geochemistry, Geophysics, Geosystems, v.11(3), Q03004, doi:https://doi.org/10.1029/2009GC002788.

    Article  Google Scholar 

  • Joachimski, M.M., Lai, X., Shen, S., Jiang, H., Luo, G., Chen, B. and Sun, Y. (2012) Climate warming in the latest Permian and the Permian—Triassic mass extinction. Geology, v.40(3), pp.195–198.

    Article  Google Scholar 

  • Johnston, D.T., Farquhar, J. and Canfield, D.E. (2007) Sulfur isotope insights into microbial sulfate reduction: When microbes meet models. Geochim, Cosmochim, Acta, v.71(16), pp.3929–3947.

    Article  Google Scholar 

  • Jones, B. and Manning, D.A. (1994) Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geol., v.111(1–4), pp.111–129.

    Article  Google Scholar 

  • Kaiho, K., Kajiwara, Y., Chen, Z.Q. and Gorjan, P. (2006) A sulfur isotope event at the end of the Permian. Chemical Geol., v.235(1–2), pp.33–47.

    Article  Google Scholar 

  • Kaiho, K., Kajiwara, Y., Nakano, T., Miura, Y., Kawahata, H., Tazaki, K. and Shi, G. R. (2001) End-Permian catastrophe by a bolide impact: evidence of a gigantic release of sulfur from the mantle. Geology, v.29(9), pp.815–818.

    Article  Google Scholar 

  • Kajiwara, Y., Yamakita, S., Ishida, K., Ishiga, H. and Imai, A. (1994) Development of a largely anoxic stratified ocean and its temporary massive mixing at the Permian/Triassic boundary supported by the sulfur isotopic record. Palaeogeo., Palaeoclimat., Palaeoeco., v.111(3–4), pp.367–379.

    Article  Google Scholar 

  • Kapoor, H.M. (1996) The Guryul ravine section, candidate of the global stratotype and point (GSSP) of the Permian—Triassic boundary (PTB). In: Yin, H. (Ed.), The Paleozoic— Mesozoic Boundary: Candidates of the Global Stratotype Section and Point of the Permian—Triassic Boundary. China Univ. Geosci. Press, Wuhan, pp.99–110.

    Google Scholar 

  • Kimura, H. and Watanabe, Y. (2001) Oceanic anoxia at the Precambrian-Cambrian boundary. Geology, v.29(11), pp.995–998.

    Article  Google Scholar 

  • Knoll, A.H., Bambach, R.K., Payne, J.L., Pruss, S. and Fischer, W.W. (2007) Paleophysiology and end-Permian mass extinction. Earth Planet. Sci. Lett., v.256(3–4), pp.295–313.

    Article  Google Scholar 

  • Korte, C. and Kozur, H.W. (2010) Carbon-isotope stratigraphy across the Permian—Triassic boundary: a review. Jour. Asian Earth Sci., v.39(4), pp.215–235.

    Article  Google Scholar 

  • Korte, C., Pande, P., Kalia, P., Kozur, H.W., Joachimski, M.M. and Oberhänsli, H. (2010) Massive volcanism at the Permian—Triassic boundary and its impact on the isotopic composition of the ocean and atmosphere. Jour. Asian Earth Sci., v.37(4), pp.293–311.

    Article  Google Scholar 

  • Kozur, H.W. (2007) Biostratigraphy and event stratigraphy in Iran around the Permian—Triassic Boundary (PTB): implications for the causes of the PTB biotic crisis. Global and Planetary Change, v.55(1–3), pp.155–176.

    Article  Google Scholar 

  • Kramm, U. and Wedepohl, K.H. (1991) The isotopic composition of strontium and sulfur in seawater of Late Permian (Zechstein) age. Chemical Geol., v.90(3–4), pp.253–262.

    Article  Google Scholar 

  • Kumar, K., Tewari, R., Agnihotri, D., Sharma, A., Pandita, S.K., Pillai, S.S. and Bhat, G.D. (2017) Geochemistry of the Permian-Triassic sequences of the Guryul Ravine section, Jammu and Kashmir, India: Implications for oceanic redox conditions. Geo. Res. Jour., v.13, pp.114–125.

    Google Scholar 

  • Kump, L.R., Pavlov, A. and Arthur, M. A. (2005). Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology, v.33(5), pp.397–400.

    Article  Google Scholar 

  • Leventhal, J.S. and Hosterman, J.W. (1982) Chemical and mineralogical analysis of Devonian black-shale samples from Martin County, Kentucky; Carroll and Washington counties, Ohio; Wise County, Virginia; and Overton County, Tennessee, USA. Chemical Geol., v.37(3–4), pp.239–264.

    Article  Google Scholar 

  • Lewan, M.D. (1984) Factors controlling the proportionality of vanadium to nickel in crude oils. Geochim. Cosmochim. Acta, v.48(11), pp.2231–2238.

    Article  Google Scholar 

  • Lewan, M.D. and Maynard, J.B. (1982) Factors controlling enrichment of vanadium and nickel in the bitumen of organic sedimentary rocks. Geochim. Cosmochim. Acta, v.46(12), pp.2547–2560.

    Article  Google Scholar 

  • Meyer, K.M., Kump, L.R. and Ridgwell, A. (2008) Biogeochemical controls on photic-zone euxinia during the end-Permian mass extinction. Geology, v.36, pp.747–750.

    Article  Google Scholar 

  • Nakazawa, K. (1993) Stratigraphy of the Permian/Triassic transition and the Paleozoic/Mesozoic boundary, Bull. Geol. Surv. Japan, v.44, pp.425–445.

    Google Scholar 

  • Nakazawa, K., Kapoor, H.M., Ishii, K.I., Bando, Y., Okimura, Y. and Tokuoka, T. (1975) The upper Permian and the lower Triassic in Kashmir, India. Memoirs of the Faculty of Science, Kyoto University. Series of Geology and Mineralogy, v.42, pp.1–106.

    Google Scholar 

  • Newton, R. J., Pevitt, E. L., Wignall, P.B., and Bottrell, S.H. (2004) Large shifts in the isotopic composition of seawater sulphate across the Permo—Triassic boundary in northern Italy. Earth Planet. Sci. Lett., v.218(3–4), pp.331–345.

    Article  Google Scholar 

  • Nielsen, J.K., Shen, Y., Piasecki, S. and Stemmerik, L. (2010) No abrupt change in redox condition caused the end-Permian marine ecosystem collapse in the East Greenland Basin. Earth Planet. Sci. Lett., v.291(1–4), pp.32–38.

    Article  Google Scholar 

  • Odermatt, J. R. and Curiale, J. A. (1991) Organically bound metals and biomarkers in the Monterey Formation of the Santa Maria Basin, California. Chemical Geol., v.91(2), pp.99–113.

    Article  Google Scholar 

  • Olson, E. C. (1989) Problems of permo triassic terrestrial vertebrate extinctions. Historical Biology, v.2(1), pp.17–35.

    Article  Google Scholar 

  • Onoue, T., Sato, H., Yamashita, D., Ikehara, M., Yasukawa, K., Fujinaga, K., Kato, Y. and Matsuoka, A. (2016) Bolide impact triggered the Late Triassic extinction event in equatorial Panthalassa. Scientific Reports, v.6(1), pp.1–8.

    Article  Google Scholar 

  • Rahmstorf, S. (2003) Thermohaline circulation: The current climate. Nature, v. 421(6924), pp.699–699.

    Article  Google Scholar 

  • Raza, M.Q. (2021) Metallogenesis of Tintini copper deposit and Gogi uranium deposit. Eastern Dharwar craton. Unpublished Ph.D thesis, Pondicherry Universiy, Puducherry, India. p.223.

    Google Scholar 

  • Reichow, M.K., Pringle, M.S., Al’Mukhamedov, A.I., Allen, M.B., Andreichev, V.L., Buslov, M.M. and Saunders, A.D. (2009) The timing and extent of the eruption of the Siberian Traps large igneous province: Implications for the end-Permian environmental crisis. Earth Planet. Sci. Lett., v.277(1–2), pp. 9–20.

    Article  Google Scholar 

  • Riccardi, A.L., Arthur, M.A. and Kump, L.R. (2006) Sulfur isotopic evidence for chemocline upward excursions during the end-Permian mass extinction. Geochim. Cosmochim. Acta, v.70(23), pp.5740–5752.

    Article  Google Scholar 

  • Rimmer, S.M. (2004). Geochemical paleoredox indicators in Devonian—Mississippian black shales, central Appalachian Basin (USA). Chemical Geol., v.206(3–4), pp.373–391.

    Article  Google Scholar 

  • Rudnick, R.L., Gao, S., Holland, H.D. and Turekian, K.K. (2003) Composition of the continental crust. The Crust, v.3, pp.1–64.

    Google Scholar 

  • Saitoh, M., Ueno, Y., Isozaki, Y. and Yoshida, N. (2021) Multiple sulfur isotope chemostratigraphy across the Permian—Triassic boundary at Chaotian, China: Implications for a shoaling model of toxic deep waters. Island Arc, v.30(1), pp.12398.

    Article  Google Scholar 

  • Satyanarayanan, M., Balaram, V., Sawant, S.S., Subramanyam, K.S.V., Krishna, G. V., Dasaram, B. and Manikyamba, C. (2018) Rapid determination of REEs, PGEs, and other trace elements in geological and environmental materials by high resolution inductively coupled plasma mass spectrometry. At. Spectrosc, v.39(1), pp.1–15.

    Article  Google Scholar 

  • Schobben, M. Stebbins, A., Algeo, T.J., Strauss, H., Leda, L., Haas, J. and Korte, C. (2017) Volatile earliest Triassic sulfur cycle: A consequence of persistent low seawater sulfate concentrations and a high sulfur cycle turnover rate?. Palaeogeo., Palaeoclimat., Palaeoeco., v.486, pp.74–85.

    Article  Google Scholar 

  • Schobben, M., Stebbins, A., Ghaderi, A., Strauss, H., Korn, D. and Korte, C. (2015) Flourishing Ocean drives the end-Permian marine mass extinction. Proc. Nat. Acad. Sci., v.112(33), pp.10298–10303.

    Article  Google Scholar 

  • Seal, R.R. (2006) Sulfur isotope geochemistry of sulfide minerals. Rev. Mineral. Geochem., v.61(1), pp.633–677.

    Article  Google Scholar 

  • Sharp, Z. (2007) Principles of stable isotope geochemistry: Pearson Prentice Hall. Upper Saddle River.

  • Shaw, T.J., Gieskes, J.M. and Jahnke, R.A. (1990) Early diagenesis in differing depositional environments: the response of transition metals in pore water. Geochim. Cosmochim. Acta, v.54(5), pp.1233–1246.

    Article  Google Scholar 

  • Shen, J., Algeo, T. J., Hu, Q., Zhang, N., Zhou, L., Xia, W. and Feng, Q. (2012) Negative C-isotope excursions at the Permian-Triassic boundary linked to volcanism. Geology, v.40(11), pp.963–966.

    Article  Google Scholar 

  • Shen, J., Feng, Q., Algeo, T.J., Li, C., Planavsky, N.J., Zhou, L. and Zhang, M. (2016) Two pulses of oceanic environmental disturbance during the Permian—Triassic boundary crisis. Earth Planet. Sci. Lett., v.443, pp.139–152.

    Article  Google Scholar 

  • Shen, Jun, Jiubin Chen, Thomas J. Algeo, Shengliu Yuan, Qinglai Feng, Jianxin Yu, Lian Zhou, Brennan O’Connell, and Noah J. Planavsky (2019) Evidence for a prolonged Permian—Triassic extinction interval from global marine mercury records. Nature Comm., v.10, pp.1–9.

    Article  Google Scholar 

  • Shen, S.Z., Cao, C.Q., Henderson, C.M., Wang, X.D., Shi, G. R., Wang, Y. and Wang, W. (2006) End-Permian mass extinction pattern in the northern peri-Gondwanan region. Palaeoworld, v.15(1), pp.3–30.

    Article  Google Scholar 

  • Shen, Y.A., Farquhar, J., Zhang, H., Masterson, A., Zhang, T. and Wing, B.A. (2011) Multiple S-isotopic evidence for episodic shoaling of anoxic water during Late Permian mass extinction. Nature Comm., v.2(1), pp.1–5.

    Article  Google Scholar 

  • Shimizu, D. (1981) Upper Permian brachiopod fossils from Guryul Ravine and the Spur three kilometres north of Barus. In: Nakazawa, K., Kapoor, H.M. (Eds.), The Upper Permian and Lower Triassic Faunas of Kashmir. Palaeontologica Indica, New Series, v.46, pp.67–85.

  • Song, H., Wignall, P.B., Chu, D., Tong, J., Sun, Y., Song, H., He, W. and Tian, L. (2014) Anoxia/high temperature double whammy during the Permian-Triassic marine crisis and its aftermath. Scientific Reports, v.4(1), pp.1–7.

    Google Scholar 

  • Song, H., Wignall, P.B., Tong, J., Song, H., Chen, J., Chu, D., Tian, L., Luo, M., Zong, K., Chen, Y. and Lai, X. (2015). Integrated Sr isotope variations and global environmental changes through the Late Permian to early Late Triassic. Earth Planet. Sci. Lett., v.424, pp.140–147.

    Article  Google Scholar 

  • Song, Huyue, Jinnan Tong, Thomas J. Algeo, Micha Horacek, Haiou Qiu, Haijun Song, Li Tian, and Zhong-Qiang Chen (2013) Large vertical δ13CDIC gradients in Early Triassic seas of the South China craton: Implications for oceanographic changes related to Siberian Traps volcanism. Global and Planetary Change, v.105 pp.7–20.

    Article  Google Scholar 

  • Stampfli, G., Marcoux, J. and Baud, A. (1991) Tethyan margins in space and time. Palaeogeo., Palaeoclimat., Palaeoeco., v.87(1–4), pp.373–409.

    Article  Google Scholar 

  • Stebbins, A., Algeo, T.J., Krystyn, L., Rowe, H., Brookfield, M., Williams, J. and Hannigan, R. (2019) Marine sulfur cycle evidence for upwelling and eutrophic stresses during Early Triassic cooling events. Earth Sci. Rev., v.195, pp.68–82.

    Article  Google Scholar 

  • Tewari, R., Pandita, S.K., McLoughlin, S., Agnihotri, D., Pillai, S.S., Singh, V. and Bhat, G.D. (2015) The Permian—Triassic palynological transition in the Guryul Ravine section, Kashmir, India: implications for Tethyan—Gondwanan correlations. Earth Sci. Rev., v.149, pp.53–66.

    Article  Google Scholar 

  • Tohver, E., Schmieder, M., Lana, C., Mendes, P.S.T., Jourdan, F., Warren, L. and Riccomini, C. (2018) End-Permian impactogenic earthquake and tsunami deposits in the intracratonic Paraná Basin of Brazil: GSA Bulletin, v.130(7–8): 1099–1120. doi:https://doi.org/10.1130/B31626.1.

    Google Scholar 

  • Tribovillard, N.P., Desprairies, A., Lallier-Vergès, E., Bertrand, P., Moureau, N., Ramdani, A. and Ramanampisoa, L. (1994) Geochemical study of organic-matter rich cycles from the Kimmeridge Clay Formation of Yorkshire (UK): productivity versus anoxia. Palaeogeo., Palaeoclimat., Palaeoeco., v.108(1–2), pp.165–181.

    Article  Google Scholar 

  • Webb, D.J. and Suginohara, N (2001) Vertical mixing in the ocean. Nature, v.409(6816), pp.37–37.

    Article  Google Scholar 

  • Wignall, P.B. and Newton, R. (1998) Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks. Amer. Jour. Sci., v.298(7), pp.537–552.

    Article  Google Scholar 

  • Wignall, P. B. and Twitchett, R. J. (1996) Oceanic anoxia and the end Permian mass extinction. Science, v.272(5265), pp.1155–1158.

    Article  Google Scholar 

  • Wignall, P.B., Newton, R. and Brookfield, M.E. (2005) Pyrite framboid evidence for oxygen-poor deposition during the Permian—Triassic crisis in Kashmir. Palaeogeo., Palaeoclimat., Palaeoeco., v.216(3–4), pp.183–188.

    Article  Google Scholar 

  • Winguth, C. and Winguth, A.M. (2012) Simulating Permian—Triassic oceanic anoxia distribution: Implications for species extinction and recovery. Geology, v.40(2), pp.127–130.

    Article  Google Scholar 

  • Wu, L., Lu, Y., Jiang, S., Liu, X., Liu, Z. and Lu, Y. (2019) Relationship between the origin of organic-rich shale and geological events of the Upper Ordovician-Lower Silurian in the Upper Yangtze area. Marine Petrol. Geol., v.102, pp.74–85.

    Article  Google Scholar 

  • Wu, Y., Chu, D., Tong, J., Song, H., Dal Corso, J., Wignall, P.B. and Cui, Y. (2021) Six-fold increase of atmospheric pCO2 during the Permian—Triassic mass extinction. Nature Commn., v.12(1), pp.1–8.

    Google Scholar 

  • Yin, H.F., Zhang, K.X., Tong, J.N., Yang, Z.Y., Wu, S.B. (2001) The Global Stratotype Sec tion and Point (GSSP) of the Permian—Triassic boundary. Episodes, v.24, pp.102–114.

    Article  Google Scholar 

  • Zhang, G., Zhang, X., Hu, D., Li, D., Algeo, T. J., Farquhar, J., and Shen, Y. (2017) Redox chemistry changes in the Panthalassic Ocean linked to the end-Permian mass extinction and delayed Early Triassic biotic recovery. Proc. Nat. Acad. Sci., v.114(8), pp.1806–1810.

    Article  Google Scholar 

  • Zhang, G., Zhang, X., Li, D., Farquhar, J., Shen, S., Chen, X. and Shen, Y. (2015) Widespread shoaling of sulfidic waters linked to the end-Guadalupian (Permian) mass extinction. Geology, v.43(12), pp.1091–1094.

    Google Scholar 

Download references

Acknowledgements

We thank the Chairman, Department of Geology, AMU, Aligarh, and authorities of the Department of Earth Sciences, Pondicherry University, Puducherry, and Department of Earth Sciences, University of Kashmir, Srinagar, for providing necessary facilities to carry out this work. We sincerely thank Professor S. Balakrishnan and Central instrumentation Facility of Pondicherry University for allowing sulphur isotope analyses at IRMS facility. We also thank Professor P.P. Chakraborty, Department of Geology, Univeristy of Delhi for extending TOC analysis. Drs. M. Rammohan and M. Satyanarayanan, NGRI, Hyderabad is thankfully acknowledged for facilitating elemental geochemical analyses. SAR is thankful to SERB (Department of Science & Technology), New Delhi, for supporting this work in the form of a major research project (EMR/2016/005000). The authors are thankful to an anonymous reviewer for constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaik A. Rashid or Nurul Absar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashid, S.A., Absar, N., Ganai, J.A. et al. Sulphur Isotopic Evidence for Upwelling of Anoxic Deep Water as the Cause of End-Permian Mass Extinction from Guryul Ravine Permo-Triassic Boundary Section, Kashmir, India. J Geol Soc India 98, 1189–1198 (2022). https://doi.org/10.1007/s12594-022-2151-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-022-2151-6

Navigation