Skip to main content
Log in

Terminal Ediacaran anoxia in deep-ocean: Trace element evidence from cherts of the Liuchapo Formation, South China

  • Published:
Science in China Series D: Earth Sciences Aims and scope Submit manuscript

Abstract

Here we report a detailed trace element study of the cherts from Liuchapo Formation, which is a terminal Ediacaran (551-542 Ma) succession in South China deposited in deep-water basinal setting. The REE of Liuchapo cherts shows similar features as observed for anoxic modern seawater (but not for hydrothermal fluids), characterized by positive La anomaly (LaN/CeN = 0.83–1.91, average 1.37), moderately negative Ce anomaly (0.53–1.1, average 0.73), positive Gd anomaly (average 1.08), positive Y anomaly (average 1.21), and depleted LREE and MREE. In addition, the Liuchapo cherts have low ΣREE (3.36–56.13 ppm, average 20.6 ppm), low Al2O3, Ti, Th and Zr concentrations, and high Y/Ho ratios (up to 43.9). The redox-sensitive trace elements concentrations in the cherts do not correlate with detrital input proxies. All of these features suggest that the redox-sensitive trace elements in the cherts were authigenically concentrated in water column and their concentrations thus are excellent indicators of ancient redox conditions. Very low Th/U ratios, high V/(V+Ni) and Fe/Al ratios, enrichments of redox-sensitive trace elements (U, V, Mo), and low concentration of Mn in the cherts imply anoxia in the deep seawater. Our data reveal that the terminal Ediacaran ocean was not completely oxidized and the deep ocean was still anoxic, at least in South China. We propose that although the oxidative events existed in the terminal Ediacaran oceans, decomposition of organic matter prolonged anoxia in the deep ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Knoll A H. Life on a Young Planet: The First Three Billion Years of Evolution on Earth. Princeton/Oxford: Princeton University Press, 2003. 1–277

    Google Scholar 

  2. Xiao S, Zhang Y, Knoll A H. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 1998, 391(6667): 553–558

    Article  Google Scholar 

  3. Narbonne G M. The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Annu Rev Earth Planet Sci, 2005, 33(1): 421–442

    Article  Google Scholar 

  4. Knoll A H. The early evolution of eukaryotes: A geological perspective. Science, 1992, 256(5057): 622–627

    Article  Google Scholar 

  5. Marshall C R. Explaining the Cambrian “explosion” of animals. Annu Rev Earth Planet Sci, 2006, 34(1): 355–384

    Article  Google Scholar 

  6. Fike D A, Grotzinger J P, Pratt L M, et al. Oxidation of the Ediacaran ocean. Nature, 2006, 444(7120): 744–747

    Article  Google Scholar 

  7. McFadden K A, Huang J, Chu X L, et al. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proc Nat Acad Sci USA, 2008, 105(9): 3197–3202

    Article  Google Scholar 

  8. Canfield D E, Poulton S W, Narbonne G M. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science, 2007, 315(5808): 92–95

    Article  Google Scholar 

  9. Canfield D E, Poulton S W, Knoll A H, et al. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science, 2008, 321(5891): 949–952

    Article  Google Scholar 

  10. Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem Geol, 2006, 232(1–2): 12–32

    Article  Google Scholar 

  11. Tang S R, Wang D A, Li R W. Organic petrology of the Cambrian-Sinian chert from the Xiangchuan region (in Chinese). Acta Sediment Sin, 1997, 15(1): 54–59

    Google Scholar 

  12. Chen X H, Wang X F, Mao X D. Sequence stratigraphy and depositional environments of the late Sinian-early Cambrian black rock series in Western Hunan and its origins (in Chinese). Acta Geosci Sin, 1999, 20(1): 87–95

    Google Scholar 

  13. Wang J G, Chen D Z, Wang Q C, et al. Platform evolution and marine source rock deposition during the terminal Sinian to early Cambrian in the middle Yangtze region (in Chinese). Acta Geol Sin, 2007, 81(8): 1102–1109

    Google Scholar 

  14. Steiner M, Wallis E, Erdtmann B D, et al. Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils-Insights into a Lower Cambrian facies and bio-evolution. Palaeogeogr Palaeoclimatol Palaeoecol, 2001, 169(3): 165–191

    Article  Google Scholar 

  15. Hunan Bureau of Geology and Mineral Resources. Regional Geology of Hunan Province (in Chinese). Beijing: Geological Publishing House, 1988. 25–40

    Google Scholar 

  16. Pu X C, Zhang J Q, Luo A P, et al. Sedimentary Rocks, Sedimentary Facies and Minerals in Late Epoch of Sinian in Upper Yangzi Region (in Chinese). Chongqing: Chongqing Publishing House, 1987. 1–149

    Google Scholar 

  17. Peng J, Xia W J, Yi H S. Geochemical characteristics and depositional environments of the late Precambrian bedded siliceous rocks in western Hunan (in Chinese). Sediment Facies Palaeogeogr, 1999, 19(2): 29–37

    Google Scholar 

  18. Peng J, Xu W G. Geochemical characterictics of depositional environment of the upper Sinian bedded siliceous rocks in western Hunan (in Chinese). Geochimica, 2001, 30(3): 293–298

    Google Scholar 

  19. Chen X H, Wang X F. Biota and organic matter in late Sinian and early Cambrian black rock series of West Hunan and their significance to metallization (in Chinese). Geol Mineral Resour South China, 2000, (1): 16–23

  20. Peng J, Yi H S, Xia W J. Origin and geochemical characteristics of late Precambrian bedded silicalites in Hunan, Guizhou and Guangxi (in Chinese). Geol Geochem, 1999, 27(4): 33–39

    Google Scholar 

  21. Wignall P B, Myers K J. Interpreting benthic oxygen levels in mudrocks: A new approach. Geology, 1988, 16(5): 452–455

    Article  Google Scholar 

  22. Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem Geol, 1994, 111(1–4): 111–129

    Article  Google Scholar 

  23. McLennan S M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. In: Lipin B R, McKay G A, eds. Geochemistry and Mineralogy of Rare Earth Elements. Min Soc Am Rev Mineral, 1989, 21: 169–200

  24. Bau M, Dulski P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Res, 1996, 79(1–2): 37–55

    Article  Google Scholar 

  25. Bolhar R, Kamber B S, Moorbath S, et al. Characterisation of early Archaean chemical sediments by trace element signatures. Earth Planet Sci Lett, 2004, 222(1): 43–60

    Article  Google Scholar 

  26. Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publication, 1985. 1–312

    Google Scholar 

  27. Webb G E, Kamber B S. Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy. Geochim Cosmochim Acta, 2000, 64(9): 1557–1564

    Article  Google Scholar 

  28. Kato Y, Nakao K, Isozaki Y. Geochemistry of Late Permian to Early Triassic pelagic cherts from southwest Japan: Implications for an oceanic redox change. Chem Geol, 2002, 182(1): 15–34

    Article  Google Scholar 

  29. Byrne R H, Lee J H. Comparative yttrium and rare earth element chemistries in seawater. Mar Chem, 1993, 44(2–4): 121–130

    Article  Google Scholar 

  30. Nozaki Y, Zhang Y S, Amakawa H. The fractionation between Y and Ho in the marine environment. Earth Planet Sci Lett, 1997, 148(1–2): 329–340

    Article  Google Scholar 

  31. Piper D Z. Seawater as the source of minor elements in black shales, phosphorites and other sedimentary rocks. Chem Geol, 1994, 114(1–2): 95–114

    Article  Google Scholar 

  32. Piper D Z, Isaacs C M. Minor elements in Quaternary sediments from the Sea of Japan: A record of surface-water productivity and intermediate-water redox conditions. Geol Soc Am Bull, 1995, 107(1): 54–67

    Article  Google Scholar 

  33. Alibo D S, Nozaki Y. Rare earth elements in seawater: Particle association, shale normalization, and Ce oxidation. Geochim Cosmochim Acta, 1998, 63(3–4): 363–372

    Google Scholar 

  34. German C R, Masuzawa T, Greaves M J, et al. Dissolved rare earth elements in the Southern Ocean: Cerium oxidation and the influence of hydrography. Geochim Cosmochim Acta, 1995, 59(8): 1551–1558

    Article  Google Scholar 

  35. German C R, Holliday B P, Elderfield H. Redox cycling of rare earth elements in the suboxic zone of the Black Sea. Geochim Cosmochim Acta, 1991, 55(12): 3535–3558

    Article  Google Scholar 

  36. German C R, Elderfield H. Rare earth elements in Saanich Inlet, British Columbia, a seasonally anoxic basin. Geochim Cosmochim Acta, 1989, 53(10): 2561–2571

    Article  Google Scholar 

  37. Douville E, Bienvenu P, Charlou J L, et al. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochim Cosmochim Acta, 1999, 63(5): 627–643

    Article  Google Scholar 

  38. Slack J F, Grenne T, Bekker A, et al. Suboxic deep seawater in the late Paleoproterozoic: Evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA. Earth Planet Sci Lett, 2007, 255(1–2): 243–256

    Article  Google Scholar 

  39. Michard A, Albarède G, Michard G, et al. Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13°N). Nature, 1983, 303(5920): 795–797

    Article  Google Scholar 

  40. Michard A. Rare earth element systematics in hydrothermal fluids. Geochim Cosmochim Acta, 1989, 53(3): 745–750

    Article  Google Scholar 

  41. German C R, Klinkhammer G P, Edmond J M, et al. Hydrothermalscavenging of rare earth elements in the ocean. Nature, 1990, 345(6275): 516–518

    Article  Google Scholar 

  42. German C R, Hergt J, Palmer M R, et al. Geochemistry of a hydrothermal sediment core from the OBS vent-field, 21°N East Pacific Rise. Chem Geol, 1999, 155(1–2): 65–75

    Article  Google Scholar 

  43. Schröder S, Grotzinger J P. Evidence for anoxia at the Ediacaran-Cambrian boundary: The record of redox-sensitive trace elements and rare earth elements in Oman. J Geol Soc London, 2007, 164(1): 175–187

    Article  Google Scholar 

  44. Shields G, Stille P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: An isotopic and REE study of Cambrian phosphorites. Chem Geol, 2001, 175(1–2): 29–48

    Article  Google Scholar 

  45. Myers K J, Wignall P B. Understanding Jurassic organic-rich mudrocks-New concepts using gamma-ray spectrometry and palaeoecology: Examples from the Kimmeridge Clay of Dorset and the Jet Rock of Yorkshire. In: Leggett J K, Zuffa G G, eds. Marine Clastic Environments: Concepts and Case Studies. London: Graham and Trotman, 1987. 172–189

    Google Scholar 

  46. Emerson S R, Huested S S. Ocean anoxia and the concentrations of molybdenum and vanadium in seawater. Mar Chem, 1991, 34(3–4): 177–196

    Article  Google Scholar 

  47. Calvert S E, Pedersen T F. Geochemistry of recent oxic and anoxic marine sediments: Implications for the geologic record. Mar Geol, 1993, 113(1–2): 67–88

    Article  Google Scholar 

  48. Wignall P B. Black Shales. New York: Oxford University Press, 1994. 1–127

    Google Scholar 

  49. Morford J L, Russell A D, Emerson S. Trace metal evidence for changes in redox environment associated with the transition from terrigenous clay to diatomaceous sediment, Saanich Inlet, BC. Mar Geol, 2001, 174(1–4): 355–369

    Article  Google Scholar 

  50. Thomson J, Jarvis I, Green D R H, et al. Oxidation fronts in Madeira Abyssal Plain turbidites: Persistence of early diagenetic trace-element enrichments during burial, Site 950. In: Weaver P P E, Schmincke H U, Firth J V, et al, eds. Proceedings ODP Sci Results. College Station, TX: Ocean Drilling Program, 1998. 157: 559–572

    Google Scholar 

  51. Yarincik K M, Murray R W, Lyons T W, et al. Oxygenation history of bottom waters in the Cariaco Basin, Venezuela, over the past 578000 years: Results from redox-sensitive metals (Mo, V, Mn, and Fe). Paleoceanography, 2000, 15(6): 593–604

    Article  Google Scholar 

  52. Yang J H, Jiang S Y, Ling H F, et al. Paleoceanographic significance of redox-sensitive metals of black shales in the basal Lower Cambrian Niutitang Formation in Guizhou Province, South China. Prog Nat Sci, 2004, 14(2): 152–157

    Article  Google Scholar 

  53. Guo Q J, Shields G A, Liu C Q, et al. Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China: Implications for organosedimentary metal enrichment and silicification in the early Cambrian. Palaeogeogr Palaeoclimatol Palaeoecol, 2007, 254(1–2): 194–216

    Article  Google Scholar 

  54. Zhou C, Jiang S Y. Palaeoceanographic redox environments for the lower Cambrian Hetang Formation in South China: Evidence from pyrite framboids, redox sensitive trace elements, and sponge biota occurrence. Palaeogeogr Palaeoclimatol Palaeoecol, 2009, 271(3–4): 279–286

    Article  Google Scholar 

  55. Liu Y, Chao L, Li Z, et al. Trace Elements Geochemistry (in Chinese). Beijing: Science Press, 1984. 1–548

    Google Scholar 

  56. Wignall P B, Twitchett R J. Oceanic anoxia and the end Permian mass extinction. Science, 1996, 272(5265): 1155–1158

    Article  Google Scholar 

  57. Kimura H, Watanabe Y. Ocean anoxia at the Precambrian-Cambrian boundary. Geology, 2001, 29(11): 995–998

    Article  Google Scholar 

  58. Rimmer S M. Geochemical paleoredox indicators in Devonian-Mississippian black shales, Central Appalachian Basin (USA). Chem Geol, 2004, 206(3–4): 373–391

    Article  Google Scholar 

  59. Calvert S E, Pedersen T F. Sedimentary geochemistry of manganese: Implications for the environment of formation of manganiferous black shales. Econ Geol, 1996, 91(1): 36–47

    Article  Google Scholar 

  60. Canfield D E, Thamdrup B, Hansen J W. The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction and sulfate reduction. Geochim Cosmochim Acta, 1993, 57(16): 3867–3883

    Article  Google Scholar 

  61. German C R, Elderfield H. Application of the Ce anomaly as a paleoredox indicator: The ground rules. Paleoceanography, 1990, 5(5): 823–833

    Article  Google Scholar 

  62. Holser W T. Evaluation of the application of rare-earth elements to paleoceanography. Palaeogeogr Palaeoclimatol Palaeoecol, 1997, 132(1–4): 309–323

    Article  Google Scholar 

  63. Lyons T W, Severmann S A. Critical look at iron paleoredox proxies: New insights from modern euxinic marine basins. Geochim Cosmochim Acta, 2006, 70(23): 5698–5722

    Article  Google Scholar 

  64. Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chem Geol, 2004, 206(3–4): 289–318

    Article  Google Scholar 

  65. Tribovillard N, Riboulleau A, Lyons T, et al. Enhanced trapping of molybdenum by sulfurized organic matter of marine origin as recorded by various Mesozoic formations. Chem Geol, 2004, 213(4): 385–401

    Article  Google Scholar 

  66. Berner R A. A model for atmospheric CO2 over Phanerozoic time. Am J Sci, 1991, 291(4): 339–376

    Google Scholar 

  67. Shields G, Veizer J. Precambrian marine carbonate isotope database: Version 1.1. Geochem Geophys Geosyst, 2002, 3, doi: 10.1029/2001GC000266

  68. Wu C D, Chen Q Y, Lei J J. The genesis factors and organic petrology of black shale series from the upper Sinian to the lower Cambrian, southwest of China (in Chinese). Acta Petrol Sin, 1999, 15(3): 453–462

    Google Scholar 

  69. Zhang T G, Chu X L, Zhang Q R, et al. The sulfur and carbon isotope records in carbonate of the Dengying Formation in the Yangtze Platform (in Chinese). Acta Petrol Sin, 2004, 20(3): 717–724

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XueLei Chu.

Additional information

Supported by National Natural Science Foundation of China (Grants Nos. 40532012, 40873007, 40603021) and Chinese Academy of Sciences (Grant No. KZCX3-SW-141)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, H., Chu, X., Feng, L. et al. Terminal Ediacaran anoxia in deep-ocean: Trace element evidence from cherts of the Liuchapo Formation, South China. Sci. China Ser. D-Earth Sci. 52, 807–822 (2009). https://doi.org/10.1007/s11430-009-0070-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-009-0070-7

Keywords

Navigation