Skip to main content
Log in

Assessment of Seismic Vulnerability using the Ambient Noise Recordings in Cachar Fold Belt, Assam

  • Original Article
  • Published:
Journal of the Geological Society of India

Abstract

Northeast India is a seismically active region, with frequent major earthquakes. The impact of seismicity can be assessed by using the values fundamental resonant frequency (F0) and the site amplification factor (A0) to derive the seismic vulnerability index (Kg). In 2011, a network of 65 stations was installed in the Cachar fold belt, Assam to continuously record data for a continuous period of eleven months. In this study, the horizontal-to-vertical spectral ratio (H/V) method is employed to identify the resonant frequencies and site amplification factors using ambient noise data to assess the seismic hazard potential in the Cachar fold belt. The amplification factors ranged between 1.15 to 6, while the resonance frequencies varied between 0.25 to 5 Hz. The ambient noise interferometry is utilized to estimate surface waves between station pairs and invert the group velocity dispersion curves for the near-surface S-wave velocities. The S-wave velocity for the basement rocks varied between 600 to 1600 m/s. The S-wave velocities are in turn used to derive an empirical relationship between resonant frequency and alluvium thickness valid for the study region. It is found that stations located at regions with subsurface anticlines had a relatively high resonance frequency and low amplification factor, whereas receivers in synclinal locations and with a thick layer of alluvium sedimentary deposits have a substantially higher site amplification factor and lower resonant frequencies. Further, it is observed that regions with a substantial alluvium sediment cover and near the course of the Barak river are more seismically vulnerable and susceptible to natural hazards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acerra, C., Havenith, H.B. and Zacharopoulos, S. (2004) Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations measurements, processing and interpretation (No. European Commission—EVG1-CT-2000-00026 SESAME). European Commission.

  • Akkaya, Ý. (2020) Availability of seismic vulnerability index (K g) in the assessment of building damage in Van, Eastern Turkey. Earthquake Engg. and Engineering Vibration, v.19(1), pp.189–204.

    Article  Google Scholar 

  • Bard, P. Y. (1999) Microtremor measurements: a tool for site effect estimation. The effects of surface geology on seismic motion. Jour. title, v.3, pp.1251–1279.

    Google Scholar 

  • Behm, M., Leahy, G. M. and Snieder, R. (2014) Retrieval of local surface wave velocities from traffic noise—an example from the La Barge basin (Wyoming). Geophys. Prospect., v.62(2), pp.223–243.

    Article  Google Scholar 

  • Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., … & Yang, Y. (2007). Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys. Jour. Internat., v.169(3), pp.1239–1260.

    Article  Google Scholar 

  • Bonnefoy-Claudet, S., Baize, S., Bonilla, L. F., Berge-Thierry, C., Pasten, C., Campos, J., … & Verdugo, R. (2009) Site effect evaluation in the basin of Santiago de Chile using ambient noise measurements. Geophys. Jour. Internat., v.176(3), pp.925–937.

    Article  Google Scholar 

  • Census of India (2011) http://www.censusindia.gov.in/, accessed 30th June, 2019.

  • Chatterjee, S.M., Deb, A., Rao, C.V., Reddy, P.K., Sanyal, A. and Yadagiri, K. (2006) Triangle zone geometry in Cachar thrust-fold belt, India. In: SEG Technical Program Expanded Abstracts 2006 (pp. 1118–1122). Society of Exploration Geophysicists.

  • Chávez-García, F.J. and Luzón, F. (2005) On the correlation of seismic microtremors. Jour. Geophys. Res.: Solid Earth, v.110(11). doi:https://doi.org/10.1029/2005JB003671

  • Cox, B. R., Cheng, T., Vantassel, J. P. and Manuel, L. (2020). A statistical representation and frequency-domain window-rejection algorithm for single-station HVSR measurements. Geophys. Jour. Internat., v.221(3), pp.2170–2183.

    Article  Google Scholar 

  • Das, J.D., Dutta, T. and Saraf, A.K. (2007) Remote sensing and GIS application in change detection of the Barak river channel, NE India. Jour. Indian Soc. Remote Sensing, v.35(4), pp.301–312.

    Article  Google Scholar 

  • De Ridder, S., and Biondi, B.L. (2015) Ambient seismic noise tomography at Ekofisk: Geophys., v.80, pp.B167–B176.

    Article  Google Scholar 

  • Delgado, J., Casado, C.L., Estevez, A., Giner, J., Cuenca, A. and Molina, S. (2000) Mapping soft soils in the Segura river valley (SE Spain): a case study of microtremors as an exploration tool. Jour. Appl. Geophys., v.45(1), pp.19–32.

    Article  Google Scholar 

  • Dinesh, B.V., Nair, G.J., Prasad, A.G.V., Nakkeeran, P.V. and Radhakrishna, M.C. (2010). Estimation of sedimentary layer shear wave velocity using micro-tremor H/V ratio measurements for Bangalore city. Soil Dynamics and Earthquake Engineering, v.30(11), pp.1377–1382.

    Article  Google Scholar 

  • Draganov, D., Campman, X., Thorbecke, J., Verdel, A. and Wapenaar, K. (2009) Reflection images from ambient seismic noise: Geophysics, v.74, pp.A63–A67.

    Article  Google Scholar 

  • Dziewonski, A., Bloch, S. and Landisman, M. (1969) A technique for analysis of transient seismic signals: Bull. Seismol. Soc. Amer., v.59, pp.427–444.

    Article  Google Scholar 

  • Fäh, D., Kind, F. and Giardini, D. (2001). A theoretical investigation of average H/V ratios. Geophys. Jour. Internat., v.145(2), pp.535–549.

    Article  Google Scholar 

  • Garain, S., Mitra, D., & Das, P. (2019). Detection of hydrocarbon microseepage-induced anomalies by spectral enhancements of Landsat 7 ETM+ images in part of Assam—Arakan Fold Belt, India. Jour. Petrol. Explorat. Prod. Tech., v.9(4), pp.2573–2582.

    Article  Google Scholar 

  • Geological Survey of India, Dasgupta, S., Narula, P.L., Acharyya, S.K. and Banerjee, J. (2000) Seismotectonic atlas of India and its environs. Geological Survey of India.

  • Haney, M.M., and Tsai, V.C. (2015) Nonperturbational surface-wave inversion: A Dix-type relation for surface waves. Geophysics, v.80, pp.EN167–EN177.

    Article  Google Scholar 

  • Haney, M.M. and Tsai, V.C. (2017) Perturbational and non-perturbational inversion of Rayleigh-wave velocities. Geophysics, v.82(3), pp.F15–F28.

    Article  Google Scholar 

  • Hanasoge, S. M., & Branicki, M. (2013) Interpreting cross-correlations of one-bit filtered seismic noise. Geophys. Jour. Internat., v.195(3), pp.1811–1830.

    Article  Google Scholar 

  • Ibs-von Seht, M. and Wohlenberg, J. (1999) Microtremor measurements used to map thickness of soft sediments. Bull. Seismol. Soc. Amer., v.89, pp.250–259.

    Article  Google Scholar 

  • Kayal, J. R. (2008). Microearthquake seismology and seismotectonics of South Asia. Springer Science & Business Media.

  • Kayal, J.R., Arefiev, S.S., Baruah, S., Hazarika, D., Gogoi, N., Gautam, J L., … & Tatevossian, R. (2012) Large and great earthquakes in the Shillong plateau-Assam valley area of Northeast India Region: Pop-up and transverse tectonics. Tectonophysics, v.532, pp.186–192.

    Article  Google Scholar 

  • Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C., and Wassermann, J. (2015). ObsPy: a bridge for seismology into the scientific Python ecosystem. Computational Science & Discovery, v.8(1), 014003.

    Article  Google Scholar 

  • Lachetl, C. and Bard, P.Y. (1994) Numerical and theoretical investigations on the possibilities and limitations of Nakamura’s technique. Jour. Phys. Earth, v.42(5), pp.377–397.

    Article  Google Scholar 

  • Lermo, J., and Chávez-García, F.J. (1993) Site effect evaluation using spectral ratios with only one station. Bull. Seismol. Soc. Amer., v.83(5), pp.1574–1594.

    Article  Google Scholar 

  • Lobkis, O. I., and Weaver, R.L. (2001) On the emergence of the Green’s function in the correlations of a diffuse field. Jour. Acoust. Soc. Amer., v.110, pp.3011–3017.

    Article  Google Scholar 

  • McNamara, D.E. and Buland, R.P. (2004) Ambient Noise Levels in the Continental United States. Bull. Seismol. Soc. Amer., v.94(4), pp.517–1527.

    Article  Google Scholar 

  • Martin, E. (2020) A Linear Algorithm for Ambient Seismic Noise Double Beamforming Without Cross-correlations.

  • Mazumder, S., Adhikari, K., Mitra, D.S., Mahapatra, S. and Pangtey, K.K.S. (2016) A neotectonic based geomorphic analysis using remote sensing data to delineate potential areas of hydrocarbon exploration: Cachar area, Assam. Jour. Geol. Soc. India, v.88(1), pp.87–97.

    Article  Google Scholar 

  • Molnar, S., Cassidy, J. F., Castellaro, S., Cornou, C., Crow, H., Hunter, J. A., … & Yong, A. (2018) Application of microtremor horizontal-to-vertical spectral ratio (MHVSR) analysis for site characterization: State of the art. Surveys in Geophysics. Geophysics, v.39(4), pp.613–631.

    Article  Google Scholar 

  • Mordret, A., M. Land’es, N. M. Shapiro, S. C. Singh, P. Roux, and O. I. Barkved, 2013, Near-surface study at the Valhall oil field from ambient noise surface wave tomography:Geophys. Jour. Internat., v.193, pp.1627–1643.

    Article  Google Scholar 

  • Mukhopadhyay, S. and Bormann, P. (2004). Low cost seismic microzonation using microtremor data: an example from Delhi, India. Jour. Asian Earth Sci., v.24(3), pp.271–280.

    Article  Google Scholar 

  • Mundepi, A.K. and Lindholm, C. (2009) Soft soil mapping using Horizontal to Vertical Spectral Ratio (HVSR) for seismic hazard assessment of Chandigarh city in himalayan foothills, North India. Jour. Geol. Soc. India, v.74(5), pp.551.

    Article  Google Scholar 

  • Nagamani, D., Sivaram, K., Rao, N.P., & Satyanarayana, H.V.S. (2020) Ambient noise and earthquake HVSR modelling for site characterization in southern mainland, Gujarat. Jour. Earth System Sci., v.129(1), pp.1–14.

    Google Scholar 

  • Nakamura, Y. (1989) A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, Quarterly Reports, v.30(1).

  • Nakamura, Y. (1997, November) Seismic vulnerability indices for ground and structures using microtremor. In World Congress on Railway Research in Florence, Italy.

  • Nakamura, Y. (2000) Clear identification of fundamental idea of Nakamura’s technique and its applications: 12th World Conference on Earthquake and Engineering. New Zealand.

  • Nakamura Y. (2019) What is the Nakamura method?. Seismol. Res. Lett., v.90(4), pp.1437–1443.

    Google Scholar 

  • Nakata, N., Chang, J.P., Lawrence, J.F. and Boue, P. (2015) Body wave extraction and tomography at Long Beach, California, with ambient-noise interferometry: Jour. Geophys. Res.: Solid Earth, v.120, pp.1159–1173.

    Article  Google Scholar 

  • Nath, S.K., Thingbaijam, K.K.S. and Raj, A. (2008) Earthquake hazard in Northeast India—A seismic microzonation approach with typical case studies from Sikkim Himalaya and Guwahati city. Jour. Earth System Sci., v.117(2), pp.809–831.

    Article  Google Scholar 

  • NEHRP (1997), Recommended Provisions For Seismic Regulations For New Buildings and Other Structures, FEMA-303, Prepared by the Building Seismic Safety Council for the Federal Emergency Management Agency, Washington, DC.

  • Nogoshi, M. and Igarashi, T. (1971) On the Amplitude Characteristics of Microtremor, Part II. Jour. Seismol. Soc. Japan, v.24, pp.26–40.

    Google Scholar 

  • Obermann, A., Lupi, M., Mordret, A., Jakobsdottir, S.S. and Miller, S.A. (2016) 3D-ambient noise Rayleigh wave tomography of Snaefellsjokull volcano, Iceland: Jour. Volcanol. Geotherm. Res., v.317.

  • Peterson, J. (1993) Observation and modelling of seismic background noise. U.S. Geol. Surv. Tech. rept.

  • Parolai, S., Bormann, P., and Milkereit, C. (2002) New relationships between Vs, thickness of sediments, and resonance frequency calculated by the H/V ratio of seismic noise for the Cologne area (Germany). Bull. Seismol. Soc. Amer., v.92(6), pp.2521–2527.

    Article  Google Scholar 

  • Rickett, J. and Claerbout, J.F. (1999) Acoustic daylight imaging via spectral factorization: Helioseismology and reservoir monitoring: The Leading Edge, v.18, pp.957–960.

    Article  Google Scholar 

  • Rigo, A., Sokos, E., Lefils, V. and Briole, P. (2021) Seasonal variations in amplitudes and resonance frequencies of the HVSR amplification peaks linked to groundwater. Geophys. Jour. Internat., v.226(1), pp.1–13.

    Article  Google Scholar 

  • Saha, D., Bahguna, C.S., Prabhakarudu, J.N. and Baloni, C.L. (2008) Significance of gravity and magnetic data over thrust-fold area—A case study in the Cachar area of Surma sub-basin of Assam—Arakan Basin, Assam, India. In 7th Int. Conf. & Exposition on Petroleum Geophysics, Hyderabad, India (pp.145–151).

  • SESAME. (2004) Guidelines for the Implementation of the H/V Spectral Ratio Technique on Ambient Vibrations Measurements, Processing, and Interpretation. (No. WP12-Deliverable D23.12; p.62). European Commission — Research General Directorate.

  • Shapiro, N.M. and Campillo, M. (2004) Emergence of broad-band Rayleigh waves from correlations of the ambient seismic noise.: Geophys. Res. Lett., v.31, L07614.

    Article  Google Scholar 

  • Shapiro, N. M., Campillo, M., Stehly, L., & Ritzwoller, M. H. (2005). High-resolution surface-wave tomography from ambient seismic noise. Science, v.307(5715), pp.1615–1618.

    Article  Google Scholar 

  • Sivaram, K., Mahesh, P., & Rai, S.S. (2012). Stability assessment and quantitative evaluation of H/V spectral ratios for site response studies in Kumaon Himalaya, India using ambient noise recorded by a broadband seismograph network. Pure and Appl. Geophys., v.169(10), pp.1801–1820.

    Article  Google Scholar 

  • Snieder, R., 2004, Extracting the Green’s function from the correlation of coda waves: A derivation based on stationary phase: Phys. Rev. E, v.69, 046610.

    Article  Google Scholar 

  • Surve, G., & Mohan, G. (2010) Site response studies in Mumbai using (H/V) Nakamura technique. Natural Hazards, v.54(3), pp.783–795.

    Article  Google Scholar 

  • Sylvette, B. C., Cécile, C., Pierre-Yves, B., Fabrice, C., Peter, M., Jozef, K., & Fäh, D. (2006). H/V ratio: a tool for site effects evaluation. Results from 1-D noise simulations. Geophys. Jour. Internat., v.167(2), pp.827–837.

    Article  Google Scholar 

  • Vantassel, J. (2020) https://doi.org/10.5281/zenodo.3666956, Zenodo. jpvantassel/hvsrpy: latest (Concept).

  • Walling, M. Y., & Mohanty, W. K. (2009) An overview on the seismic zonation and microzonation studies in India. Earth-Sci. Rev., v.96(1–2), pp.67–91.

    Article  Google Scholar 

  • Wapenaar, K. (2004) Retrieving the Elastodynamic Green’s Function of an Arbitrary Inhomogeneous Medium by Cross Correlation: Phys. Rev. Lett., v.93.

  • Yang, Y., & Ritzwoller, M. H. (2008) Characteristics of ambient seismic noise as a source for surface wave tomography. Geochem., Geophys., Geosyst., v.9(2).

  • Yao, H., X. Campman, M. V. de Hoop, and R. van der Hilst (2009) Estimation of surface wave Green’s functions from correlation of direct waves, coda waves, and ambient noise in SE Tibet: Phys. Earth Planet. Inter., v.77, pp.1–11.

    Article  Google Scholar 

  • Zigone, D., Y. Ben-Zion, M. Campillo, and P. Roux, 2015, Seismic Tomography of the Southern California Plate Boundary Region from Noise-Based Rayleigh and Love Waves: Pure and Applied Geophysics, 172, 1007–1032.

    Article  Google Scholar 

Download references

Acknowledgements

The “PAN IIT-ONGC” research project helped with funding and obtaining data for the study. We would like to express our gratitude to IIT Bombay and ONGC for allowing us to publish the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuldeep.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuldeep, Shekar, B., Mohan, G. et al. Assessment of Seismic Vulnerability using the Ambient Noise Recordings in Cachar Fold Belt, Assam. J Geol Soc India 98, 795–804 (2022). https://doi.org/10.1007/s12594-022-2070-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-022-2070-6

Navigation