Skip to main content
Log in

Petrography and Geochemistry of Sandstones of Eocene Kopili Formation, Shillong Plateau: Implications on Paleo-weathering, Provenance and Tectonic Setting

  • Original Article
  • Published:
Journal of the Geological Society of India

Abstract

Geochemical and mineralogical studies were carried out on the sandstones of the Eocene Kopili Formation, Shillong Plateau to evaluate paleo-weathering, provenance and tectonic setting. The study area is located on the bank of the Lubha River along the Badarpur-Jowai road section. The Kopili Formation is represented by a sequence of alternation of shales and sandstones. The sandstone beds are usually thin, fine grained, ferruginous and mostly parallel laminated. The thickness of the sandstone beds increases towards the top with decreasing numbers of shale beds. Petrographically the sandstones are dominated by monocrystalline and polycrystalline quartz followed by feldspar, mica and rock fragments. The matrix content does not exceed 15% and hence the sandstones can be classified as arenite. The Kopili sandstones are classified as quartz arenite to sublitharenite, and arkose to sublitharenite based on their petrographic and geochemical parameters respectively. Arenitic composition and high SiO2/Al2O3 ratio indicate that the Kopili sandstones are highly mature. The weathering indices mostly indicate low to moderate (except 49D sample) degree of chemical weathering under arid to semi humid climatic conditions. The major and trace element-based diagrams and their ratios indicate that the Kopili sandstone received sediments from felsic dominated source with minor contribution from basic source rocks and are deposited in tectonically passive margin setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Absar, N., Nizamudheen, B. M., Augustine, S., Managave, S. and Balakrishnan, S. (2016) C, O, Sr and Nd isotope systematics of carbonates of Papaghni sub-basin, Andhra Pradesh, India: Implications for genesis of carbonate-hosted stratiform uranium mineralization and geodynamic evolution of the Cuddapah Basin. Lithos, v.263, pp.88–100.

    Article  Google Scholar 

  • Armstrong-Altrin, J. S. (2009) Provenance of sands from Cazones, Acapulco, and Bahía Kino beaches, Mexico. Revista Mexicana de Ciencias Geologicas, v.26, pp.764–782.

    Google Scholar 

  • Armstrong-Altrin, J. S., Lee, Y. I., Verma, S. P., and Ramasamy, S. (2004) Geochemistry of sandstones from the Upper Miocene Kudankulam Formation, Southern India: Implications for provenance, weathering, and tectonic setting. Jour. Sediment. Res., v.74, pp.285–297.

    Article  Google Scholar 

  • Armstrong-Altrin, J. S., Nagarajan, R., Madhavaraju, J., Rosalez-Hoz, L., Lee, Y. I., Balaram, V., Cruz-Martinez, A. and Avila-Ramirez, G. (2013) Geochemistry of the Jurassic and upper Cretaceous shales from the Molango Region, Hidalgo, Eastern Mexico: Implications of source-area weathering, provenance, and tectonic setting. Comptes Rendus Geoscience, v.345, pp.185–202.

    Article  Google Scholar 

  • Basu, A., Young, S., Suttner, L. J., James, W. C., Mack, C. H. (1975) Reevaluation of the use of undulatory extinction and polycrystallinity in detrital quartz for provenance interpretation. Jour. Sediment. Petrol., v.45, pp.873–882.

    Google Scholar 

  • Bauluz, B., Mayayo, M. J., Fernandez-Nieto, C. and Lopez, J. M. G. (2000) Geochemistry of Precambrian and Paleozoic siliciclastic rocks from the Iberian Range (NE Spain): implications for source-area weathering, sorting, provenance, and tectonic setting. Chemical Geol., v.168, pp.135–150.

    Article  Google Scholar 

  • Bhandari, L.L., Fuloria, R.C. and Sastry, V.V. (1973) Stratigraphy of Assam Valley, India. AAPG Bull., v.57, pp.640–650.

    Google Scholar 

  • Bhatia, M.R. (1983) Plate tectonics and geochemical composition of sandstone. Jour. Geol., v.91, pp.611–627.

    Article  Google Scholar 

  • Bhatia, M.R. and Crook, K.A.W. (1986) Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contrib. Mineral. Petrol., v.92, pp.181–193.

    Article  Google Scholar 

  • Chakraborty, A., Mitra, P., Chakraborty, D.K. and Ramdev, C.M. (1974) Geology of Tertiary sedimentary belts of Garo and Khasi hills, Meghalaya. ONGC Report (Unpublished).

  • Condie, K.C. (1993) Chemical composition and evolution of the upper continental crust; Contrasting results from surface samples and shales. Chemical Geol., v.104, pp.1–37.

    Article  Google Scholar 

  • Cox, R. and Lowe, D.R. (1995) A conceptual review of regional scale controls on the composition of clastic sediment and the coevolution of continental blocks and their sedimentary cover. Jour. Sediment. Res., v.65, pp.1–12.

    Google Scholar 

  • Crook, K.A.W. (1974) Lithogenesis and geotectonics: the significance of compositional variation in flysch arenites (graywackes), In: Dott, R.H. and Shaver, R.H. (Eds.), Modern and ancient geosynclinal sedimentation: SEPM Spec. Publ., no.19, pp.304–310.

  • Cullers, R. L. and Podkovyrov, V.N. (2000) Geochemistry of the Mesoproterozoic Lakhanda shales in southern Yakutia, Russia: Implications for mineralogical and provenance control, and recycling. Precambrian Res., v.104, pp.77–93.

    Article  Google Scholar 

  • Cullers, R.L., (2000) The geochemistry of shales, siltstones, and sandstones of Pennsylvanian-Permian age, Colorado, USA: Implications for provenance and metamorphic studies. Lithos v.51, pp.181–203.

    Article  Google Scholar 

  • Cullers, R.L., Chaudhuri, S., Kilbane, N. and Koch, R. (1979) Rare earths in size fractions and sedimentary rocks of Pennsylvanian Permian age from the mid-continent of the U.S.A. Geochim. Cosmochim. Acta, v.43, pp.1285–1302.

    Article  Google Scholar 

  • Dabard, M.P. (1990) Lower Brioverian Formation (Upper Proterozoic) of the American Massif (France): Geodynamic evolution of source areas revealed by sandstone petrography and geochemistry. Sediment. Geol., v.69, pp.45–8.

    Article  Google Scholar 

  • Deshpande, S. V., Goel, S. M, Bhandari, A., Baruah, R.M., Deshpande, J.S, Kumar, A., Rana, K.S, Chitrao, A.M., Giridhar, M., Chowdhuri, D., Kale, A.S and Phor, L. (1993) Lithostratigraphy of Indian petroliferous basins: Document-X. Unpublisd Report, ONGC.

  • Dickinson, W.R. and Suczek, C.A. (1979) Plate tectonics and sandstone compositions. AAPG Bull., v.63, pp.2164–2182

    Google Scholar 

  • Dickinson, W.R., Beard, L.S., Brakenridge, G.R., Erjavec, J.L., Ferguson, R.C., Inman, K.F., Knepp, R.A., Lindberg, F.A. and Ryberg, P.T. (1983) Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geol. Soc. Amer. Bull., v.94, pp.222–235.

    Article  Google Scholar 

  • Dickinson, W.R. Bear, L.S., Brakenridge, Erjavec, J.L., Ferguson, R.C., Inman, K.F., Knepp, R.A. Lindberg, F.A. and Ryberg, P.T. (1983) Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geol. Soc. Amer. Bull., v.94, pp.222–235.

    Article  Google Scholar 

  • Dutta, S.K. and Jain, K.P. (1980) Geology and palynology of the area around Lumshnong, jaintia Hills. Meghalaya, India. Biological Memoirs, v.5, pp.56–81.

    Google Scholar 

  • Evans, P. (1932) The Tertiary succession in Assam: Geology and Metallurgy Institute of India. Trans. Mineral., v.27, pp.155–260.

    Google Scholar 

  • Fatima, S. and Khan, M.S. (2012) Petrographic and geochemical characteristics of Mesoproterozoic Kumbalgarh clastic rocks, NW Indian shield: Implications for provenance, tectonic setting and crustal evolution. Internat. Geol. Rev., v.54, pp.1113–1144.

    Article  Google Scholar 

  • Fedo, C.M. Wayne Nesbitt, H., and Young, G.M. (1995) Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, v.23, pp.921–924.

    Article  Google Scholar 

  • Feng, R. and Kerrich, R. (1990) Geochemistry of fine grained clastic sediments in the Archaean Abitibi Greenstone Belt, Canada: Implications for provenance and tectonic setting. Geochim. Cosmochim. Acta, v.54, pp.1061–1081.

    Article  Google Scholar 

  • Folk, R.L. (1980) Pertrology of sedimentary rocks. Hemphill Publishing Company, Austin, Texas, U.S.A., pp.182.

    Google Scholar 

  • Ghosh, S., Sarkar, S., and Ghosh, P. (2012) Petrography and major element geochemistry of the Permo-Triassic sandstones, Central India: Implications for provenance in an intracratonic pull-apart basin. Jour. Asian Earth Sci., v.43, pp.207–240.

    Article  Google Scholar 

  • Gogoi, A., and Bhagabaty, B. (2018) Geochemical Characteristics of Metasomatised Diorites in and around Umsopri of Ri-bhoi District, Meghalaya. Indian Jour. Geogra., Environ. Earth Sci. Internat., v.15, pp.1–14.

    Google Scholar 

  • Hara, H., Kunii, M., Hisada K., Ueno, K., Kamata, Y., Srichan, W., Charusiri, P., Charoentitirat, T., Watarai, M., Adachi, Y. and Kurihara, T. (2012) Petrography and geochemistry of clastic rocks within the In-thanon zone, northern Thailand: Implications for Paleo-Tethys subduction and convergence. Jour. Asian Earth Sci., v.61, pp.2–15.

    Article  Google Scholar 

  • Hayashi, K., Fujisawa, H., Holland, H. D. and Ohmoto, H. (1997) Geochemistry of ∼1.9 Ga sedimentary rocks from Northeastern Labrador, Canada. Geochim. Cosmochim. Acta, v.61, pp.4115–4137.

    Article  Google Scholar 

  • Hofmann, A. (2005) The geochemistry of sedimentary rocks from the Fig Tree Group, Barberton Greenstone Belt: Implications for plate tectonic, hydrothermal and surface processes during mid-Archean times. Precambrian Res., v.143, pp.23–49.

    Article  Google Scholar 

  • Hussain, M.F., Islam, M.S., and Deb, M. (2020) Petrological and geochemical study of the Sylhet Trap basalts, Shillong plateau, N.E. India: Implications for petrogenesis. European Jour. Geosci., v.02, pp.01–18.

    Google Scholar 

  • Ingersoll, R. V., Bullard, T. F., Ford, R. L., Grimm, J. E., Pickle, J. D. and Sares, S. W. (1984) The effect of grain size on detrital modes: a test of the Gazzi-Dickinson point counting method. Jour. Sediment. Petrol., v.54, pp.103–116.

    Google Scholar 

  • Johnsson, M.J. (1993) The system controlling the composition of clastic sediments. In processes controlling the composition of clastic sediments. In: Johnsson M.J. and Basu A. (Eds), Processes controlling the composition of clastic sediments. Geol. Soc. Amer., Spec. Papers 284, pp.1–19.

  • Khan, T. and Khan, M.S. (2015) Clastic rock geochemistry of Punagarh Basin, Trans-Aravalli region, NW Indian shield: Implications for paleoweathering, provenance, and tectonic setting. Arabian Jour. Geosci., v.8, pp.3621–3644.

    Article  Google Scholar 

  • Khan, T. and Khan, M.S. (2016) Geochemistry of the sandstones of Punagarh basin: Implications for two source terranes and Arabian-Nubian connection of Aravalli craton? Jour. Geol. Soc. India, v.88, pp.366–386.

    Article  Google Scholar 

  • Khan, T., Sarma, D.S., and Khan, M.S. (2020) Geochemical study of the Neoproterozoic clastic sedimentary rocks of the Khambal Formation (Sindreth Basin), Aravalli Craton, NW Indian Shield: Implications for paleoweathering, provenance and geodynamic evolution. Geochemistry, v.80, pp.125596.

    Article  Google Scholar 

  • Khan, T., Sarma, D. S., Somasekhar, V., Ramanaiah, S., and Reddy, N. R. (2019) Geochemistry of the Palaeoproterozoic quartzites of Lower Cuddapah Supergroup, South India: Implications for the palaeoweathering, provenance and crustal evolution. Geol. Jour., v.55, pp.1567–1611.

    Google Scholar 

  • Krishna, A.K., Murthy, N.N., and Govil, P.K. (2007) Multi element analysis of soils by wavelength-dispersive X-ray fluorescence spectrometry. Atomic Spectroscopy, v.28, pp.202–214.

    Google Scholar 

  • Krynine, P. D. (1940) Petrology and genesis of the Third Bradford sand, Pennsylvania State College Bulletin, Mineral Industries Experiment Station, Bulletin 29, 134p.

  • Mackenzie, F.T. and Garrels, R.M. (1971) Evolution of sedimentary rocks. Norton, New York.

  • McLennan, S.M. (1989) Rare earth elements in sedimentary rocks; influence of provenance and sedi-mentary processes. In: Lipin, B.R. and McKay, G. A. (Eds.), Rev. Mineral. Geochem., v.21 (1), pp.169–200.

  • McLennan, S.M. (1989) Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes. Rev. Mineral., v.21, pp.169–200.

    Google Scholar 

  • McLennan, S.M., Hemming, S., McDaniel, D.K. et al. (1993) Geochemical approaches to sedimentation, provenance, and tectonics. Spec. Papers Geol. Soc. Amer., v.284, pp.21–44.

    Article  Google Scholar 

  • McLennan, S.M., Taylor, S.R., McCulloch, M.T. and Maynard, J.B. (1990) Geochemical and Nd-Sr iso-topic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations. Geo-chim. Cosmochim. Acta, v.54, pp.2015–2050.

    Article  Google Scholar 

  • Medlicott, H.B. (1869) Geological sketch of the Shillong Plateau in N-E Bengal. Memoirs of the Geol. Surv. India, v.7, pp.151–207.

    Google Scholar 

  • Nesbitt, H.W. and Young, G. M. (1982) Early Proterozoic climates and plate motions inferred from ma-jor element chemistry of lutites. Nature, v.299, pp.715–717.

    Article  Google Scholar 

  • Nesbitt, H.W. and Young, G.M. (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim. Cosmochim. Acta, v.48, pp.1523–1534.

    Article  Google Scholar 

  • Nesbitt, H.W. and Young, G.M. (1989) Formation and diagenesis of weathering profiles. Jour. Geol., v.97, pp.129–147.

    Article  Google Scholar 

  • Nesbitt, H.W., Markovics, G. and Price, R.C. (1980) Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochim. Cosmochim. Acta, v.44, pp.1659–1666.

    Article  Google Scholar 

  • Nesbitt, H.W., Young, G.M., McLennan, S.M. and Keays, R.R. (1996) Effect of geochemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies. Jour. Geol., v.104, pp.525–542.

    Article  Google Scholar 

  • Nesbitt, H.W., Markovics, G. and Price, R.C. (1980) Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochim. Cosmochim. Acta, v.44, pp.1659–66.

    Article  Google Scholar 

  • Periasamy, V., and Venkateshwarlu, M. (2017) Petrography and geochemistry of Jurassic sandstones from the Jhuran Formation of Jara dome, Kachchh basin, India: Implications for provenance and tectonic setting. Earth System Science, v.126, pp.44.

    Article  Google Scholar 

  • Perri, F., Critelli, S., Cavalcante, F., Mongelli, G., Dominici, R., Sonnino, M. and De Rosa, R. (2012) Provenance signatures for the Miocene volcaniclastic succession of the Tufiti di Tusa Formation, south-ern Apennines, Italy. Geol. Magz., v.149, pp.423–442.

    Article  Google Scholar 

  • Pettijohn, F.J. (1975) Sedimentary Rocks. 3rd Edition, Harper and Row, New York, 628p.

    Google Scholar 

  • Pettijohn, F.J., Potter, P.E., and Siever, R. (1972) Sand and Sandstones. Springer, Berlin Heidelberg, New York, 618p.

    Google Scholar 

  • Pettijohn, F.J., Potter, P.E., and Siever, R. (1987) Sand and Sandstone. Springer, pp.431–487.

  • Potter, P.E., Maynard, J.B. and Depetris, P.J. (2005) Mud and mudstones: Introduction and overview. Springer, Heidelbeerg, 297p.

    Book  Google Scholar 

  • Ray, J., Saha, A., Ganguly, S., Balaram, V., Krishna, A.K. and Hazra, S. (2011) Geochemistry and petrogenesis of Neoproterozoic Mylliem granitoids, Meghalaya Plateau, Northeastern India. Earth System Science, v.120, pp.459–473.

    Article  Google Scholar 

  • Reddy, A.N., Nayak, K.K., Gogoi, D. and Satyanarayana, K. (1992) Trace fossils in cores of Kopili, Barail and Tipam sediments of Upper Assam Shelf. Jour. Geol. Soc. India, v.40(3), pp.253–257.

    Google Scholar 

  • Roddaz, M., Debat, P. and Nikiema, S. (2007) Geochemistry of upper Birimian sediments (major and trace elements and Nd-Sr isotopes) and implications for weathering and tectonic setting of the late Palaeoproterozoic crust. Precambrian Res., v.159, pp.197–211.

    Article  Google Scholar 

  • Roser, B. P. and Korsch, R. J. (1986) Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. Jour. Geol., v.94, pp.635–650.

    Article  Google Scholar 

  • Roser, B.P. and Korsch, R.J. (1988) Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of majorelement data. Chemical Geol., v.67, pp.119–139.

    Article  Google Scholar 

  • Roser, B.P. and Korsch, R.J. (1985) Plate tectonics and geochemical composition of sandstones: a discussion. Jour. Geol., v.93, pp. 81–84.

    Article  Google Scholar 

  • Roy Moulik, S.K., Singh, H.J., Singh Rawat, R.K., Akhtar, S.M., Mayor, S. and Asthana, M. (2009) Sand Distribution Pattern and Depositional Model of Kopili Formation (Eocene) with Special Reference to Sequence Stratigraphic Framework from North Assam Shelf, Assam-Arakan Basin, India. Search and Discovery Article 50196, AAPG Annual Convention, Colorado.

    Google Scholar 

  • Samanta, B.K. (1968) Nummulites (foraminifera) from the Upper Eocene Kopili Formation of Assam, India. Paleontol., v.11, pp.669–682.

    Google Scholar 

  • Samanta, B.K. (1985) Pellatispira (Foraminiferida) from the Upper Eocene Kopili Formation of Garo Hills, Meghalaya. Jour. Geol. Soc. India, v.26, pp.199–207.

    Google Scholar 

  • Satyanarayanan, M., Balaram, V., Sawant, S. S., Subramanyam, K. S. V., and Krishna, G. V. (2014) High precision multielement analysis on geological samples by HR?ICPMS. Proceeding of 28th ISMAS symposium Cum Workshop on Mass Spectrometry, Indian Society for Mass Spectrometry, Mumbai, pp.181–184.

    Google Scholar 

  • Saxena, R.K. and Trivedi, G.K. (2009) Palynological investigation of the Kopili Formation (Late Eocene) in North Cachar Hills, Assam, India. Acta Palaeobotanica, v.49, pp.253–277.

    Google Scholar 

  • Sein, M.K. and Sah, S.C.D. (1974) Palynological demarcation of the Eocene-Oligocene sediments in the Jowai-Badarpur Road Section, Assam. Proceeding of Symposium on Stratigraphical Palynology, Lucknow, 1971, Special Publication 3, Birbal Sahni Institute of Palaeobotany, Lucknow, pp. 99–105.

    Google Scholar 

  • Sheldon, N.D., Retallack, G.J. and Tanaka, S. (2002) Geochemical climofunctions from North American soils and application to paleosols across the Eocene-Oligocene boundary in Oregon. Jour. Geol., v.110, pp.687–696.

    Article  Google Scholar 

  • Sun, S.S. and McDonough, W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implica-tions for mantle compositions and Processes. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins. Geol. Soc. London, Spec. Publ., v.42, pp.315–345.

  • Suttner, L.J. and Dutta, P.K. (1986) Alluvial sandstone composition and palaeoclimate framework mineralogy. Jour. Sediment. Petrol., v.56, pp.329–345.

    Google Scholar 

  • Taylor, S.R. and McLennan, S.M. (1985) The Continental Crust: Its Composition and Evolution. Blackwell Scientific, Oxford, 312p.

    Google Scholar 

  • Tripathi, S.K.M. and Singh, H.P. (1984) Palynostratigraphical zonation and correlation of the Jowai-Badarpur Road Section (PalaeoceneEocene), Meghalaya. India. Proceeding of the 5th Indian Ge-ophytological Conference. Palaeobotanical Soc., Lucknow, pp.316–328.

    Google Scholar 

  • Trivedi, G.K. and Ranhotra, P.S. (2015) Palynofloral evidence for palaeoecology and depositional environment of the Kopili Formation (Late Eocene), Jaintia Hills, Meghalaya. Jour. Geol. Soc. India, v.86, pp.33–40.

    Article  Google Scholar 

  • Van de Kamp, P. C. and Leake, B. E. (1985) Petrography and geochemistry of feldspathic and mafic sediments of the northeastern Pacific margin; Earth and Environmental Science. Trans. Royal Soc. Edinburg, v.76, pp.411–449.

    Article  Google Scholar 

  • Verma, S.P. and Armstrong-Altrin, J.S. (2013) New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chemical Geol., v.355, pp.117–133.

    Article  Google Scholar 

  • Walsh, J.P., Wiberg, P.L., Aalto R., Nittrouer, C.A. and Kuehl, S. A. (2016) Source-to-sink research: Ecoomy of the Earth’s surface and its strata. Earth Sci. Rev., v.153, pp.1–6.

    Article  Google Scholar 

  • Zaidi, S. and Chakrabarti, S. K. (2006) Sequence stratigraphy and depositional environment of the Kopili Formation in the area between Borholla and Khoraghat, Dhansiri Valley, South Assam Shelf. Proceedings of 6th International Conference and Exposition on Petroleum Geophysics, Kolkata, pp.652–661.

Download references

Acknowledgement

The authors are thankful to the CSIR-National Geophysical Research Institute, Hyderabad for extending laboratory facilities for geochemical analyses. The authors are also grateful to the Department of Science and Technology, Govt. of India for enhancing laboratory facilities in the Department of Geological Sciences, Gauhati University through the FIST-2016 grant that offered immense help in petrographical analysis of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarat Phukan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonowal, P., Khan, T., Gogoi, M. et al. Petrography and Geochemistry of Sandstones of Eocene Kopili Formation, Shillong Plateau: Implications on Paleo-weathering, Provenance and Tectonic Setting. J Geol Soc India 98, 219–231 (2022). https://doi.org/10.1007/s12594-022-1962-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-022-1962-9

Navigation