Skip to main content
Log in

Crustal Melting Evidence in Migmatites of Higher Himalayan Crystallines (HHC) along Bhagirathi, Dhauliganga Valleys, and Sikkim Himalaya, India

  • Original Article
  • Published:
Journal of the Geological Society of India

Abstract

An attempt has been made to evaluate crustal melting evidence through textural studies within a narrow zone of migmatite present in NW Himalaya along Bhagirathi and Dhauliganga valleys and two zones close to MCT and throughout within in the Sikkim Himalayas, NE Himalaya. It appears that partial melting was initiated by muscovite dehydration melting with a positive volume change driving melt segregation and discontinuous crystallization of peritectic biotite in the leucosome. Further, during retrogression due to cooling, a certain amount of melt was consumed. The occurrence of isolated pseudomorphosed melt pockets and lack of euhedral magmatic flow textured feldspar further indicates that the melt fraction was low for the alignment of crystals. The processes of melt segregation and migration could have been limited. The migmatite leucosomes and a small volume of in situ tourmaline-bearing leucogranite along extensional crenulation cleavages and melt pods indicate water-saturated melting of pelitic metasedimentary rocks. The formation of migmatites happened at around 46 Ma, corresponding to a peak metamorphic event due to collisional tectonics of the Himalayan orogeny. The presence of feeder dikes for main tourmaline-bearing leucogranite indicates that the source for the main body could be migmatite which is also supported by the similarity in REE patterns of the main body and in situ tourmaline-bearing leucogranite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbey P. (2007) Diffusion-controlled biotite breakdown reaction textures at the solid/liquid transition in the continental crust: Contrib. Mineral. Petrol., v.154, pp.707–716, doi:https://doi.org/10.1007/s00410-007-0220-x.

    Article  Google Scholar 

  • Bartoli, O., Cesare, B., Poli, S., Acosta-Vigil, A., Esposito, R., Turina, A., Bodnar, R. J., Angel, R. J., Hunter, J. (2013) Nanogranite inclusions in migmatitic garnet: behavior during piston-cylinder re-melting experiments. Geofluids, v.13, pp.405–420

    Article  Google Scholar 

  • Bartoli O., Acosta-Vigil A., Ferrero O., Cesare B. (2016) Granitoid magmas preserved as melt inclusions in high-grade metamorphic rocks. Amer. Mineral., v.101, pp.1543–1559.

    Article  Google Scholar 

  • Brown M. (1994) The generation, segregation, ascent and emplacement of granite magma: The migmatite-to-crustally-derived granite connection in thickened orogens: Earth-Science Rev., v.36, pp.83–130, doi:https://doi.org/10.1016/0012-8252(94)90009-4.

    Article  Google Scholar 

  • Brown, M. (2002) Retrograde processes in migmatites and granulites revisited. Jour. Metamorp. Geol., v.20(1), pp.25–40.

    Article  Google Scholar 

  • Brown, M. and Rushmer, T. (1997) The role of deformation in the movement of granite melt: Views from the laboratory and the field. In: Holness M.B. (Ed.), Deformation-Enhanced Fluid Transport in the Earth’s Crust and Mantle: The Mineralogical Society Series 8: London, Chapman and Hall, pp.111-144.

  • Brown, M., Schulmann, K., and White, R. (2011) Granulites, partial melting and the rheology of the lower crust. Jour. Metamorp. Geol., v.29, pp.1–6.

    Article  Google Scholar 

  • Brown, M. (2013) Granite: From genesis to emplacement. GSA Bull., v.125(7–8), pp.1079–1113. doi: doi:https://doi.org/10.1130/B30877.1

    Article  Google Scholar 

  • Burchfiel, B. C., Zhiliang, C., Hodges, K. V., Yuping, L., Royden, L. H., Changrong, D. and Jiene, X. (1992) The South Tibetan detachment system, Himalayan orogen: extension contemporaneous with and parallel to shortening in a collisional mountain belt. Geol. Soc. Amer., v.269, pp.1–41.

    Google Scholar 

  • Busch, W., Schneider, G., and Mehnert, K.R. (1974) Initial melting at grain boundaries. Part II: melting in rocks of granodioritic, quartz dioritic and tonalitic composition. Neues Jahrb. Mineral., Monatsh., v.8, pp.345–370.

    Google Scholar 

  • Carosi, R. Gemignani, L. Godin, Iaccarino S., Larson K.P., Montomoli C., Rai S.M. (2014) A geological journey in the deepest canyon of the earth: the Kali Gandaki section Rodolfo. In: Chiara Montomoli, Rodolfo Carosi, Rick Law, Sandeep Singh, and Santa Man Rai (Eds.), Jour. Virtual Explorer, v.47, p.9, pp.1–31.

  • Cesare, B., Ferrero, S., Salvioli-Mariani, E., Pedron, D., Cavallo, A. (2009) Nanogranite and glassy inclusions: the anatectic melt in migmatites and granulites. Geology, v.37, pp.627–630

    Article  Google Scholar 

  • Dasgupta, S., Ganguly, J. and Neogi, S. (2004) Crystallization history, P-T gradient, and implications. Jour. Metamorphic Geol., v.22, pp.395–412. doi:https://doi.org/10.1111/j.1525-1314.2004.00522.x

    Article  Google Scholar 

  • Ding, H., Kohn, M.J. and Zhang, Z. (2021) Long-lived (ca. 22–24 Myr) partial melts in the eastern Himalaya: Petrochronologic constraints and tectonic implications, Earth Planet. Sci. Lett., v.558, 116764, doi:https://doi.org/10.1016/j.epsl.2021.116764.

    Google Scholar 

  • Etheridge, M.A., Wall, V.J., Cox, S.F. and Vernon R.H. (1984) High fluid pressures during regional metamorphism and deformation: Implications for mass transport and deformation mechanisms. Jour. Geophys. Res., v.89, pp.4344–4358. doi:https://doi.org/10.1029/JB089iB06p04344.

    Article  Google Scholar 

  • Ferrero, S., Bartoli, O., Cesare, B., Salvioli-Mariani, E., Acosta-Vigil, A., Cavallo, A., Groppo, C., Battiston, S. (2012) Microstructures of melt inclusions in anatectic metasedimentary rocks. Jour. Metamorphic Geol., v.30, pp.303–322

    Article  Google Scholar 

  • Grant, J.A. (1985) Phase equilibria in partial melting of pelitic rocks. In: Ashworth, J.R. (Ed.), Migmatites. Blackie, Glasgow, pp.86–144.

  • Groppo, C., Rubatto, D., Rolfo, F. and Lombardo, B. (2010) Early Oligocene partial melting in the main central thrust zone (Arun Valley, Eastern Nepal, Himalaya). Lithos, v.118, pp.287–301.

    Article  Google Scholar 

  • Harris, N.W.B. and Inger, S. (1992) Trace element modelling of pelite-derived granites. Contrib. Mineral. Petrol., v.110, pp.46–56

    Article  Google Scholar 

  • Harris, N.B.W. and Massey, J.A. (1994) Decompression and anatexis of Himalayan metapelites. Tectonics, v.13, pp.1537–1546.

    Article  Google Scholar 

  • Harris, N.B.W., Ayres, M. and Massey, J.A (1995) The geochemistry of granitic melts produced during the incongruent melting of muscovite: implications for the extraction of Himalayan leucogranite magmas. Jour. Geophys. Res., v.100, p.p.15767–15777.

    Article  Google Scholar 

  • Harris, N.B.W., Caddick, M., Kosler, J., Goswami, S., Vance, D., Tindle, A.G. (2004) The pressure-temperature-time path of migmatites from the Sikkim Himalaya. Jour. Metamorp. Geol., v.22(3), pp.249–264

    Article  Google Scholar 

  • Henry, D.J. and Dutrow, B. (1996) Metamorphic tourmaline and its petrologic applications. In: Grew, E.S. and Anovitz, L.M. (Eds.), Boron — Mineralogy, Petrology and Geochemistry. Mineral. Soc. Amer., Washington DC, pp. 503–557.

  • Holness, M.B. and Sawyer, E.W. (2008) On the pseudomorphing of melt-filled pores during the crystallization of migmatites. Jour. Petrol., v.49, pp.1343–1363.

    Article  Google Scholar 

  • Holness, M.B., Cesare, B. and Sawyer, E.W. (2011) Melted rocks under the microscope: microstructures and their interpretation. Elements, v.7(4), pp.247–252.

    Article  Google Scholar 

  • Jain, A.K. and Manickavasagam, R.M. (1993) Inverted metamorphism in the intracontinental ductile shear zone during Himalayan collision tectonics. Geology, v.21, pp.407–410.

    Article  Google Scholar 

  • Jain A.K., Singh. S. and Manickavasagam R.M. (2002) Himalayan Collision Tectonics: Gondwana Res. Group Memoirs, v.7, p.114.

    Google Scholar 

  • Le Breton, N. and Thompson, A.B. (1988) Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. Contrib. Mineral. Petrol., v.99, pp.226–37.

    Article  Google Scholar 

  • Leech, M.L., Singh, S., Jain, A.K., Klemperer, S.L. and Manickavasagam, R.M. (2005) The onset of India-Asia continental collision: Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth Planet. Sci. Lett., v.234, pp.83–97. doi:https://doi.org/10.1016/j.epsl.2005.02.038.

    Article  Google Scholar 

  • Mehnert, K.R., Busch, W. and Schneider, G. (1973) Initial melting at grain boundary of quartz and feldspar in gneisses and granulites. Neues Jahrb. Mineral., Monatsh., no.4, pp.165–183.

    Article  Google Scholar 

  • Patino Douce, A. E. & Harris, N. (1998) Experimental constraints on Himalayan anatexis. Jour. Petrol., v.39, pp.689–710.

    Article  Google Scholar 

  • Rosenberg, C.L. and Riller, U. (2000) Partial-melt topology in statically and dynamically recrystallized granite. Geology, v.28, pp.7–10.

    Article  Google Scholar 

  • Rosenberg, C.L. and Handy, M.R. (2005) Experimental deformation of partially melted granite revisited: Implications for the continental crust: Journal of Metamorphic Geology, v.23, pp.19–28, doi:https://doi.org/10.1111/j.1525-1314.2005.00555.x.

    Article  Google Scholar 

  • Sawyer E.W. (1999) Criteria for the recognition of partial melting: Physics and Chemistry of the Earth, Ser. A, v.24, pp.269–279.

    Google Scholar 

  • Sawyer, E.W. (2008) Atlas of Migmatites: NRC Research Press, v.9.

  • Singh, S. (2019) Protracted zircon growth in migmatites and In situ melt of Higher Himalayan Crystallines: U-Pb ages from Bhagirathi valley, NW Himalaya, India: Geoscience Frontiers, v.10, pp.793–809, doi:https://doi.org/10.1016/j.gsf.2017.12.014.

    Article  Google Scholar 

  • Singh, S. (2020) Himalayan Magmatism through space and time: Episodes, v.43(1), pp.358–368. doi:https://doi.org/10.18814/epiiugs/2020/020022.

    Article  Google Scholar 

  • Singh, S. and Jain, A.K. (2003) Himalayan Granitoids. In: Singh, S., (Ed.), Granitoids of the Himalayan Collisional Belt. Jour. Virtual Explorer, v.11, pp.1–20.

    Google Scholar 

  • Singh, S., Barley, M.E. and Jain, A.K. (2004) Tale of two migmatites and leucogranite generation within the Himalayan Collisional Zone: Evidences from SHRIMP U-Pb zircon ages from Higher Himalayan Metamorphic Belt and Trans-Himalayan Karakoram Metamorphic Belt, India: Himalayan Jour. Sci., v.2(4), pp.251–252.

    Article  Google Scholar 

  • Spencer, C.J., Harris, R.A. and Dorais, M.J. (2012a) The metamorphism and exhumation of the Himalayan metamorphic core, eastern Garhwal region, India: Metamorphic Core of the Garwhal Himalaya. Tectonics, v.31, TC1007, doi:https://doi.org/10.1029/2010TC002853.

    Google Scholar 

  • Thompson A.B. (1982) Dehydration melting of pelitic rocks and the generation of H2O — undersaturated granitic liquids. Amer. Jour. Sci., v.282, pp.1567–1595.

    Article  Google Scholar 

  • Thompson, A.B. and Tracy, R.J. (1979) Model systems for anatexis of pelitic rocks: II. Subsolidus and melting reactions in the system CaO-KA1O2-NaA1O2-Al2O3-SiO2-H2O. Contrib. Mineral. Petrol., v.70, pp.429–438.

    Article  Google Scholar 

  • Vernon, R.H. (2011) Microstructures of melt-bearing regional metamorphic rocks. Geol. Soc. Amer. Mem., no.207, pp.1–11.

    Google Scholar 

  • Vielzeuf, D. and Holloway, J.R. (1988) Experimental determination of the fluid-absent melting relations in the pelitic system—Consequences for crustal differentiation: Contrib. Mineral. Petrol., v.98, pp.257–276, doi:https://doi.org/10.1007/BF00375178.

    Article  Google Scholar 

  • Vielzeuf D. and Montel J.M. (1994) Partial melting of metagreywackes: 1. Fluid-absent experiments and phase-relationships: Contrib. Mineral. Petrol., v.117, pp.375–393, doi:https://doi.org/10.1007/BF00307272.

    Article  Google Scholar 

  • Vielzeuf D., Clemens J.D., Pin C. and Moinet E., 1990, Granites, granulites and crustal differentiation. In: D. Vielzeuf and P. Vidal (Eds.), Granulites and crustal differentiation. Dordrecht, Kluwer Academic Publishers, pp.59–85.

    Chapter  Google Scholar 

  • Waters, D.J. (2001) The significance of prograde and retrograde quartz-bearing intergrowth microstructures in partially melted granulite-facies rocks. In: Kriegsman, L.M. (Ed.), Prograde and Retrograde Processes in Migmatites: Lithos, v.56, pp.97–110.

  • Wyllie, P.J. (1977) Crustal anatexis: an experimental review: Tectonophysics, v.43, pp.41–71.

    Article  Google Scholar 

Download references

Acknowledgments

S.S. thanks H.K. Gupta and B. Mahabaleswar for inviting to write this contribution. SS also thank the Department of Science and Technology, New Delhi, Ministry of Earth Sciences (MoES/P.O. (Geosci)/27/2014; and MoES/P.O.(Geo)/101(g)/2016) for financial supports over the years. Understanding of the subject has improved by discussions with A.K. Jain, RM. Manickavasagam and Rajarshi Chakravarti at various stages.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Rit, B., Mohan, S.P. et al. Crustal Melting Evidence in Migmatites of Higher Himalayan Crystallines (HHC) along Bhagirathi, Dhauliganga Valleys, and Sikkim Himalaya, India. J Geol Soc India 98, 69–73 (2022). https://doi.org/10.1007/s12594-022-1930-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-022-1930-4

Navigation