Skip to main content
Log in

Nature of Biotites from the Granitoids of Guwahati and Mayong Areas of Shillong Plateau, Northeastern India and their Petrogenetic Significance

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

Intrusive granitoid bodies and quartzofeldspathic gneiss outcrops in the Guwahati and Mayong areas are considered part of the northern extension of the basement gneissic complex of the Shillong Plateau. They are medium to coarse-grained porphyritic granitoids essentially composed of quartz, K-feldspar, plagioclase, biotite, hornblende, sphene, magnetite, apatite, zircon, allanite, and bastnaesite in different proportions. Mineralogical characteristics of these granitoids reveal that they are monzogranite. The biotites are re-equilibrated in Guwahati granitoids whereas they are primary in Mayong granitoids. Ti-in biotite, Al-in hornblende and mineral assemblage biotite-K-feldspar-magnetite were used to determine temperature, pressure and oxygen fugacity during the crystallization of parent magmas. The Guwahati granitoids crystallized and re-equilibrated at temperatures ranging between 602°C and 752°C (avg. 685°C) with pressure (5.2–5.6 kbar, avg 5.4 kbar) from low oxidized magmas (log fO2 −16.33 to −14.36 bar), buffered below FMQ to within NNO. The Mayong granitoids crystallized at temperatures range 694°C to 715°C (avg. 705 °C) with pressure (4.7 to 5.1 kbar, avg. 5 kbar) under reduced oxidized condition (log fO2 −17.88 to −17.62 bar) buffered below FMQ. The calc-alkaline nature, low to moderate oxygen fugacity and high H2O (4.5–7.4 wt%) content suggests that Guwahati granitoids emplaced in subduction-related tectonic setting whereas alkaline nature, reduced oxygen fugacity and low content of H2O (2.15 wt%) suggest anorogenic tectonic setting for Mayong granitoids. Also, from the estimated pressure and depth of emplacement conditions it suggests that both the granitoids are mid-level plutons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Rahman, A.M. (1994) Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas. JourPetrol., v.35, pp.525–541.

    Google Scholar 

  • Ague, J.J. and Brimhall, G.H. (1988) Regional variations in bulk chemistry, mineralogy and the compositions of mafic and accessory minerals in the batholiths of California. Geol. Soc. AmerBull., v.100, pp.891–911.

    Article  Google Scholar 

  • Anderson, J.L. and Smith, D.R. (1995) The effects of temperature and fO2 on the Al-in-hornblende barometer. AmerMineral., v.80(5–6), pp.549–559.

    Google Scholar 

  • Anettsungla, Rino, V. and Kumar, S. (2018) Redox condition, nature and tectono-magmatic environment of granitoids and granite gneisses from the Karbi Anglong Hills, Northeast India: Constraints from magnetic susceptibility and biotite geochemistry. Jour. Geol. SocIndia, v.91(5), pp.601–612.

    Article  Google Scholar 

  • Aydin, F., Karsli, O. and Sadiklar, M.B. (2003) Mineralogy and chemistry of biotites from Eastern Pontide granitoid rocks, NE-Turkey: Some petrological implications for granitoid magmas. ChemErde., v.63, pp.163–182.

    Google Scholar 

  • Bando, M., Bignall, G., Sekine, K. and Tsuchiya, N. (2003) Petrography and uplift history of the Quaternary Takidani granodiorite: Could it have hosted a supercritical (HDR) geothermal reservoir? Jour. Volcanol. GeothermRes., v.120(3), pp.215–234.

    Article  Google Scholar 

  • Barriere, M. and Cotten, J. (1979) Biotites and associated minerals as markers of magmatic fractionation and deuteric equilibration in granites. Contrib. MineralPetrol., v.70, pp.183–192.

    Article  Google Scholar 

  • Batchelor, R.A. (2003) Geochemistry of biotite in metabentonites as an age discriminant, indicator of regional magma sources and potential correlating tool. MineralMagz., v.67, pp.807–817.

    Google Scholar 

  • Bhagabaty, B., Mazumdar, M.K., Mazumdar, A.C. and Borah, P. (2017) Geochemical characteristics of Tukureswari and Barbhita Granitoid in Goalpara District, Assam. Jour. Geol. SocIndia, v.89, pp.532–540.

    Article  Google Scholar 

  • Beane, R.E. (1974) Biotites stability in the porphyry copper environment. EconGeol., v.69, pp.241–256.

    Article  Google Scholar 

  • Bidyananda, M. and Deomurari, M.P. (2007) Geochronological constraints on the evolution of Meghalaya Massif, northeastern India: An ion microprobe study. Curr. Sci., v.93, No.11, pp.1620–1623.

    Google Scholar 

  • Bora, S. and Kumar, S. (2015) Geochemistry of biotites and host granitoid plutons from the Proterozoic Mahakoshal Belt, central India tectonic zone: implication for nature and tectonic setting of magmatism. Internatl. GeolRev., v.57(11–12), pp.1686–1706.

    Google Scholar 

  • Borodina, N.S., Fershtater, G.E. and Voltyakov, S.L. (1999) The oxidation ratio of iron in coexisting biotite and hornblende from granitic and metamorphic rocks: the role of P, T and f (O2). CanMineral., v.37, pp.1423–1429.

    Google Scholar 

  • Burkhard, D.J.M. (1993) Biotite crystallization temperatures and redox states in granitic rocks as indicator for tectonic setting. GeolEn Mijnb., v.71, pp.337–349.

    Google Scholar 

  • Chappell, B.W. and White, A.J.R. (1974) Two contrasting granite types. PacificGeol., v.8, pp.173–174.

    Google Scholar 

  • Chatterjee, N., Bhattacharya, A., Duarah, B.P. and Mazumdar, A.C. (2011) Late Cambrian reworking of Palaeo-Mesoproterozoic granulites in Shillong-Meghalaya Gneissic Complex (Northeast India): evidence from PT pseudosection analysis and monazite chronology and implications for East Gondwana assembly. Jour. Geol., v. 119, pp.311–330.

    Article  Google Scholar 

  • Chatterjee, N., Mazumdar, A.C., Bhattacharya, A. and Saikia, R.R. (2007) Mesoproterozoic granulites of the Shillong-Meghalaya Plateau: evidence of westward continuation of the Prydz Bay Pan-African suture into Northeastern India. Precambrian Res., v.152, pp.1–26.

    Article  Google Scholar 

  • Choudhury, D.K., Pradhan, A.K., Zakaulla, S. and Umamaheshwar, K. (2012) Geochemistry and petrogenesis of anorogenic (?) granitoids of west Garo Hills, Meghalaya. Jour. Geol. SocIndia, v.80, pp.276–286.

    Article  Google Scholar 

  • Deer, W.A., Howie, R.A. and Zussman, J. (1992) An introduction to the rock-forming minerals. Longman, London, 696p.

    Google Scholar 

  • Dodge, F.C.W., Smith, V.C. and Mays, R.E. (1969) Biotites from granitic rocks of the central Sierra Nevada batholith, California. JourPetrol., v.10, pp.250–271.

    Google Scholar 

  • Duarah, B.P. and Phukan, S. (2011) Understanding the tectonic behaviour of the Shillong Plateau, India using remote sensing data. Jour. Geol. SocIndia, v.77(2), pp.105–112.

    Article  Google Scholar 

  • Dwivedi, S.B., Theunuo, K. and Kumar, R. R. (2020) Characterization and metamorphic evolution of Mesoproterozoic granulites from Sonapahar (Meghalaya), NE India, using EPMA monazite dating. Geol. Magz., pp.1-19.

  • Dymek, R.F. (1983) Titanium, aluminium and interlayer cation substitutions in biotite from high-grade gneisses, West Greenland. AmerMineral., v.68, pp.880–889.

    Google Scholar 

  • Finch, A.A., Parsons, I. and Mingard, S.C. (1995) Biotites as indicators of fluorine fugacities in late-stage magmatic fluids: the Gardar province of south Greenland. JourPetrol., v.36, pp.1701–1728.

    Google Scholar 

  • Foster, M.D. (1960) Interpretation of the composition of tri-octahedral mica. USGS Prof. Paper 354-B, pp.11-49.

  • Frost, B.R., Barnes, C.G., Collins, W.J. Arculus, R.J., Ellis, D.J. and Frost, C.D. (2001) A geochemical classification for granitic rocks. JourPetrol., v.42, pp.2033–2048.

    Google Scholar 

  • Ghosh, S., Bhalla, J.K., Paul, D.K., Sarkar, A., Bishui, P.K. and Gupta, S.N. (1991) Geochronology and geochemistry of granite plutons from East Khasi Hills, Meghalaya. Jour. Geol. SocIndia, v.37, pp.331–342.

    Google Scholar 

  • Ghosh, S., Fallick, A.E., Paul, D.K. and Potts, P.J. (2005) Geochemistry and origin of Neoproterozoic granitoids of Meghalaya, Northeast India: implications for linkage with amalgamation of Gondwana Supercontinent. Gondwana Res., v.8, pp.421–432.

    Article  Google Scholar 

  • Goswami, B., Roy, P., Basak, A., Das, S. and Bhattacharyya, C. (2018) Physico-chemical conditions of four calc-alkaline granitoid plutons of Chhotanagpur Gneissic Complex, eastern India: Tectonic implications. Jour. Earth. System. Sci., v.127(8): 120. doi: https://doi.org/10.1007/s12040-018-10224.

    Article  Google Scholar 

  • G.S.I. (1998) Geological and Mineral Map of North-East India, Published by Geological Survey of India.

  • Hammarstrom, J.M. and Zen, E.A. (1986) Aluminum in hornblende: An empirical igneous geobarometer; Amer. Mineral., v.71(11–12), pp.1297–1313.

    Google Scholar 

  • Hazarika, P, Mishra, B. and Pruseth, K.L. (2015) Diverse tourmaline compositions from orogenic gold deposits in the Hutti-Maski greenstone belt, India: Implications for sources of ore-forming fluids. EconGeol., v.110, pp.337–353.

    Article  Google Scholar 

  • Heinrich, E. W. (1946) Studies in the mica group. Science, v.244, pp.836–848.

    Google Scholar 

  • Henry, D.J., Guidotti, C.V. and Thomson, J.A. (2005) The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms. AmerMineral., v.90(2–3), pp.316–328.

    Google Scholar 

  • Holloway, J. R. and Blank, J.G. (1994) Application of experimental results to C O H species in natural melts. Reviews in Mineralogy and Geochemistry, v.30(1), pp.187–230.

    Google Scholar 

  • Ishihara, S. (1977) The magnetite-series and ilmenite-series granitic rocks. Mining Geol(Tokyo), v.27, pp.293–305.

    Google Scholar 

  • Ishihara, S. (1981) The granitoid series and mineralization. EconGeol., v.75, pp.458–484.

    Google Scholar 

  • Johnson, M.C. and Rutherford, M.J. (1989) Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geol., v.17, pp.837–841.

    Article  Google Scholar 

  • Kumar, S. (2008) Magnetic susceptibility mapping of Ladakh granitoids, northwest Higher Himalaya: Implication to redox series of felsic magmatism in the subduction environments. Mem. Geol. Soc. India, no.72, pp.83-102.

  • Kumar, S. and Pathak, M. (2010) Mineralogy and geochemistry of biotites from Proterozoic granitoids of western Arunachal Himalaya: Evidence of bimodal granitogeny and tectonic affinity. Jour. Geol. SocIndia, v.75, pp.715–730. doi:https://doi.org/10.1007/s12594-010-0058-0.

    Article  Google Scholar 

  • Kumar, S. and Pieru, T. (2010) Petrography and major elements geochemistry of microgranular enclaves and neoproterozoic granitoids of south Khasi, Meghalaya: Evidence of magma mixing and alkali diffusion. Jour. Geol. SocIndia, v.76, pp.345–360. doi:https://doi.org/10.1007/s12594-010-0106-9.

    Article  Google Scholar 

  • Kumar, S. and Singh, Kh. M. (2008) Granite series evaluation of Early Ordovician Kyrdem granitoids and enclaves, Meghalaya Plateau, Northeast India: Implication on oxidation condition of interacting mafic-felsic magma system. Earth SciIndia, v.1, pp.204–219.

    Google Scholar 

  • Kumar, S., Pieru, T. and Rino, V. (2005) Evaluation of granitoid-series and magmatic oxidation of Neoproterozoic South Khasi Granitoids and their microgranular enclaves, Meghalaya: constraints from magnetic susceptibility and biotite composition. Jour. AppldGeochem., v.7, pp.175–194.

    Google Scholar 

  • Kumar, S., Rino, V., Hayasaka, Y., Kimura, K., Raju, S., Terada, K. and Pathak, M. (2017a) Contribution of Columbia and Gondwana Supercontinent assembly- and growth-related magmatism in the evolution of the Meghalaya Plateau and the Mikir Hills, Northeast India: Constraints from U-Pb SHRIMP zircon geochronology and geochemistry. Lithos, v.277, pp.356–375.

    Article  Google Scholar 

  • Kumar, S., Singh, B., Joshi, C.C. and Pandey, A. (2006) Magnetic susceptibility and biotite composition of granitoids of Amritpur region, Kumaun Lesser Himalaya: implication on granite series evaluation and nature of felsic magma. Jour. Geol. SocIndia, v.68, pp.666–674.

    Google Scholar 

  • Kumar. S. (1998) Granitoids and their enclaves from east Khasi Hills of Meghalaya: Petrogenetic and Geochemical reappraisal. Workshop on Geodynamics and natural Resources of Northeast India, Dibrugarh, Assam. Abstract volume, pp.17-18.

  • Kumar. S., Pieru. T., Rino. V. and Hayasaka. V (2017b) Geochemistry and U-Pb SHRIMP zircon geochronology of microgranular enclaves and host granitoids from the South Khasi Hills of the Meghalaya Plateau, NE India: evidence of synchronous mafic-felsic magma mixing-fractionation and diffusion in a post-collision tectonic environment during the Pan-African orogenic cycle. Geol. Soc., London, Spl Publ, v.457, doi:https://doi.org/10.1144/SP457.10.

  • Lalonde, A.E. and Bernard, P. (1993) Composition and color of Biotite from granites: two useful properties in the characterization of plutonic suites from the Hepburn internal zone of Wopmay orogen, Northwest Territories. CanMineral., v.31, pp.203–217.

    Google Scholar 

  • Le Maitre, R.W. (2002) A classification and glossary of terms. Recommendations of IUGS Subcommision on the Systematics of Igneous rocks. 2nd Ed., Cambridge Univ. Press, Cambridge, pp.236.

    Google Scholar 

  • Li, W., Cheng, Y. and Yang, Z. (2019a) Geo fO2: Integrated Software for Analysis of Magmatic Oxygen Fugacity. Geo fO2: Integrated software for analysis of magmatic oxygen fugacity. Geochemistry, Geophysics, Geosystems, v.20. doi:https://doi.org/10.1029/2019GC008273.

  • Li, W., Yang, Z., Cao, K., Lu, Y.J. and Sun, M.Y. (2019b) Redox controlled generation of the giant porphyry Cu-Au deposit at Pulang, southwest China. Contrib. Mineral. Petrol., v. 174(2), 12p.

  • Machev, P., Klain, L. and Hecht, L. (2004) Mineralogy and geochemistry of biotites from the Belogradchik pluton — some petrological implications for granitoid magmatism in north-west Bulgaria. Bulgarian Geol. Soc., Ann. Sci. Conf. “Geology 2004”, 16.-17.12.2004., pp.48-50.

  • Mahadevan, T.M. (2008) Precambrian geological and structural features of the Indian Peninsula. Jour. Geol. Soc. India, v.72(1),pp.35–55.

    Google Scholar 

  • Majumdar, D. and Dutta, P. (2016) Geodynamic evolution of a Pan-African granitoid of extended Dizo Valley in Karbi Hills, NE India: Evidence from Geochemistry and Isotope Geology. JourAsian Earth Sci., v.117, pp.256–268.

    Google Scholar 

  • Mazumdar, S.K. (1976) A summary of the Precambrian geology of the Khasi Hills, Meghalaya. Geol. Surv. India Misc. Publ., no.23(2), pp.311–334.

    Google Scholar 

  • Mazumdar, S.K. (1986) The Precambrian framework of part of the Khasi Hills, Meghalaya. Rec. Geol. SurvIndia, v.117, pp.1–59.

    Google Scholar 

  • Monier, G. and Robert, J.L. (1986) Muscovite solid solutions in the system K2O-MgO-FeO-Al2O3-SiO2-H2O: an experimental study at 2 kbar PH2O and comparison with natural Li free white micas. MineralMagz., v.50, pp.257–266.

    Google Scholar 

  • Moore G., Vennemann, T. and Carmichael, I. S. E. (1998) An empirical model for the solubility of H2O in magmas to 3 kilobars. Amer. Mineral., v.83(1–2),pp. 36–42.

    Article  Google Scholar 

  • Munoz, J.L. (1992) Calculation of HF and HCl fugacities from biotite compositions: revised equations. Geol. Soc. Amer., Abstr. Programs 24:A221.

  • Nachit, H., Ibhi, A., Abia, E.H. and Ohoud, M.B. (2005) Discrimination between primary magmatic biotites, re-equilibrated biotites and neoformed biotites. C R Geosci. v.337, pp.1415–1420.

    Article  Google Scholar 

  • Nandy, D.R. (2001) Geodynamics of northeastern India and the adjoining region. ABC Publications, Kolkata, 209p.

    Google Scholar 

  • Neiva, A.M.R. (1981) Geochemistry of hybrid granitoid rocks and of their biotites from central northern Portugal and their petrogenesis. Lithos, v.14, pp.149–163.

    Article  Google Scholar 

  • Patiño-Douce, A.E. (1993) Titanium substitution in biotite: an empirical model with applications to thermometry, O2 and H2O barometries, and consequences for biotite stability. Chem. Geol., v. 108, pp.133–162.

    Article  Google Scholar 

  • Pouchou, J.L. and Pichoir, F. (1984) A new model for quantitative X-ray microanalyses, Part I: Application to the analyses of homogenous samples. La Recherche Aerosp,v.3, pp.13–38.

    Google Scholar 

  • Ray, J., Saha, A., Ganguly, S., Balaram, V., Krishna, A.K. and Hazra, S. (2011) Geochemistry and petrogenesis of Neoproterozoic Mylliem granitoids, Meghalaya Plateau, northeastern India. Jour. Earth System Sci., v. 120(3), pp.459.

    Article  Google Scholar 

  • Ray, J., Saha, A., Koeberl, C., Thoni, M., Ganguly, S. and Hazra, S. (2013) Geochemistry and petrogenesis of Proterozoic mafic rocks from east Khasi Hills, Shillong Plateau, northeastern India. Precambrian Res., v.230, pp.119–137.

    Article  Google Scholar 

  • Robert, J.R. (1976) Titanium solubility in synthetic phlogopite solid solutions. ChemGeol., v.17, pp.213–227.

    Google Scholar 

  • Rutherford, M.J. (1973) The phase relations of aluminous iron biotites in the system KAlSi3O8-KAlSiO4-Al2O3-Fe-O-H. Jour. Petrol., v. 14, pp.159–180.

    Article  Google Scholar 

  • Sarma, K.P. and Dey, T., (1996) Re-look on Shillong Plateau. Bull. Pure ApplSci., v.15, pp.51–54.

    Google Scholar 

  • Schmidt, M.W. (1992) Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contrib. MineralPetrol., v.110, pp.304–310. doi:https://doi.org/10.1007/BF00310745.

    Article  Google Scholar 

  • Sengupta, P.R. and Agarwal, N.K. (1998) The tectonic segments of Northeastern India and associated gold mineralization. Jour. Geol. SocIndia, v.52(5), pp.549–556.

    Google Scholar 

  • Shabani, A.T., Lalonde, A.E. and Whalen J.B. (2003) Composition of biotite from granite rocks of the Canadian Appalachian orogen: a potential tectonomagmatic indicator. Can. Mineral., v. 4, pp.1381–1396.

    Article  Google Scholar 

  • Singh, B. and Kumar, S. (2004) Geochemistry of biotite, muscovite and tourmaline from Early Palaeozoic granitoids of Kinnaur district, Higher Himachal Himalaya. Extended abstracts: 19th Himalaya-Karakoram-Tibet workshop, Niseko, Japan. Himalayan JourSci., v.2, pp.248–249.

    Article  Google Scholar 

  • Speer, J.A. (1984) Mica in igneous rocks. In: Bailey SW (ed) Micas. Rev. Mineral. Soc. Amer., v. 13, pp.299-356.

  • Speer, J.A. (1981) Petrology of cordierite- and almandine bearing granitoid plutons of the southern Appalachian Piedmont, U.S.A. Can. Mineral., v. 19, pp.35–46.

    Google Scholar 

  • Streckeisen, A. (1973) Classification and Nomenclature of Plutonic Rocks. Recommendations by the IUGS Subcomission on the Systematics of Igneous Rocks. N. Jahrburch für Mineralogie, Monatshefre, pp.149-164.

  • Stone, D. (2000) Temperature and pressure variations in suites of Archean felsic plutonic rocks, Berens River area, northwest Superior Province, Ontario, Canada. CanMineral., v.38, pp.455–470.

    Google Scholar 

  • Stussi, J.M. and Cuney, M. (1996) Nature of biotites from alkaline, calc-alkaline and peraluminous magmas by Abdel-Fattah M Abdel-Rahman: a comment. JourPetrol., v.37, pp.1025–1029.

    Google Scholar 

  • Uchida, E., Endo, S. and Makino, M. (2007) Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits. Resource Geology, v.57(1), pp.47–56.

    Article  Google Scholar 

  • Walia, D., Lyngdoh, A.C. and Saxena, A. (2010) Seismotectonic zones demarcation in the Shillong Plateau using the microearthquakes and radon emanation rate. Acta Geophysica, v.58(5), pp.893–907.

    Article  Google Scholar 

  • Wones, D. R. (1972) Stability of biotite: A reply. AmerMineral., v.57, pp.316–317.

    Google Scholar 

  • Wones, D.R. and Eugster, H.P. (1965) Stability of biotite: experiment, theory and application. AmerMineral., v.50, pp.1228–1272.

    Google Scholar 

  • Wones, D.R. (1981) Mafic silicates as indicators of intensive variables in granitic magmas. Mining Geol., v.3, pp.191–212.

    Google Scholar 

  • Yavuz, F. and Öztas, T. (1997) BIOTERM- a program for evaluating and plotting microprobe analyses of biotite from barren and mineralized magmatic suites: Comput. Geosci., v.23, pp.897–907. doi:https://doi.org/10.1016/S0098-3004(97)00071-X.

    Google Scholar 

  • Yin, A., Dubey, C.S., Webb, A.A.G., Kelty, T.K., Grove, M., Gehrels, G.E. and Burgess, W.P. (2010) Geologic correlation of the Himalayan orogen and Indian Craton: part I. Structural geology, U-Pb zircon geochronology, and tectonic evolution of the Shillong Plateau and its neighbouring regions in Northeast India. Geol. Soc. Amer. Bull., v. 122, pp.336–359.

    Article  Google Scholar 

  • Zhu, C. and Sverjensk, D.A. (1992) Partitioning of F-Cl-OH between biotite and apatite. Geochim. CosmochimActa., v.56, pp.3435–3467.

    Article  Google Scholar 

Download references

Acknowledgements

DD is thankful to the University Grant Commission for financial support and assistance under the scheme of research fellowship. The authors are thankful towards Prof. Biswajit Mishra for facilitating the SEM and EPMA analyses in the DST-IIT National EPMA facility, IIT Kharagpur, India. The authors also acknowledge Dr. Diganta Kumar for his technical support during preparation of manuscript. Also, special credit goes to “The DST-FIST established funding (SR/FST/ESI152/2016)” in the Department of Geological Sciences, Gauhati University for facilitating the petrographic studies. Thanks to the anonymous reviewers for their most valuable scientific and thoughtful comments which help a lot to improve manuscript. Authors also gratefully acknowledged Prof. Sandeep Singh (Associate Editor) for supportive editorial handling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balen Bhagabaty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doley, D., Sarma, G. & Bhagabaty, B. Nature of Biotites from the Granitoids of Guwahati and Mayong Areas of Shillong Plateau, Northeastern India and their Petrogenetic Significance. J Geol Soc India 97, 625–634 (2021). https://doi.org/10.1007/s12594-021-1737-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-021-1737-8

Navigation