Skip to main content
Log in

Sodic-Silicic Magmatism in Tadpatri Formation- A Study in Quartz Keratophyre and Albitite

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

The mafic sills and unmetamorphosed shales and siltstones of Tadpatri Formation in Cuddapah Supergroup are associated with thin flows of quartz keratophyre and an occasional albitite dyke. The textural characteristics of these quartz keratophyre essentially establish them as igneous extrusive rocks. A detailed study of texture and chemistry, coupled with comparison of available records in geological literature, suggests that these rocks were derived through very small degree of partial melting of metasomatized mantle at pressures more than plagioclase stability field and less than jadeite stability field. High alkali content and associated volatiles led to significant decrease in viscosity and emplacement of these lavas in an extensional tectonic set-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anand, M., Gibson, S. A., Subbarao, K. V., Kelly, S.P. and Dickin, A. P. (2003) Early Proterozoic melt generation process beneath the intracratonic Cuddapah Basin, Southern India. Jour. Petrol., v.44(12), pp.2139–2171.

    Article  Google Scholar 

  • Baker, M.B., Hirschmann, M.M., Ghiorso, M.S., and Stolper, E.M. (1995) Compositions of near-solidus peridotite melts from experiments and thermodynamic calculations. Nature, v.375, pp.308–311.

    Article  Google Scholar 

  • Bhaskar Rao, Y.J., Pantulu, G.V.C., Reddy, V.D. and Gopalan, K. (1995) Time of early sedimentation and volcanism in the Proterozoic Cuddapah basin, South India: evidence from the Rb-Sr age of Pulivendla mafic sill. In: Devaraju, T.C. (Ed.), Dyke Swarms of Peninsular India. Mem. Geol. Soc. India, no.33, pp.329–338.

  • Blundy, J.D., Falloon, T.J., Wood, B.J., and Dalton, J.A. (1995) Sodium partitioning between clinopyroxene and silicate melts. Jour. Geophys. Res., v.100, pp.15501–15515

    Article  Google Scholar 

  • Chakraborty, K., Mukhopadhyay, P.K., Pankaj, P. (2016) Magmatism in western Cuddapahs: The mafic sills and lava flows of Vempalle and Tadpatri formations. Jour. Geol. Soc. India, v.53, pp.425–433.

    Google Scholar 

  • Chandrakala, K., Pandey, O.P., Mall, D. M., Sarkar, D. (2010) Seismic signatures of a Proterozoic thermal plume below south western part of Cuddapah Basin, Dharwar Craton. Jour. Geol. Soc. India, v.76, pp.565–572.

    Article  Google Scholar 

  • Chatterjee, N. and Bhattacharji, S. (2001) Petrology, geochemistry and tectonic settings of the mafic dikes and sills associated with the evolution of the Proterozoic Cuddapah Basin of south India. Proc. Indian Acad. Sci. (Earth Planet. Sci.), v.110(4), pp.433–453.

    Article  Google Scholar 

  • Chaudhuri, A.K., Saha, D., Deb, G.K., Patranabis-Deb, S., Mukherjee, M.K. & Ghosh, G. (2002) The Purana Basins of southern cratonic province of India — A case study for Mesoproterozoic fossil rifts. Gondwana Res., v.5, pp.23–33.

    Article  Google Scholar 

  • Coltorti, M., Bonadiman, C., Hinton, R.W., Siena, F., and Upton, B.G.J. (1999) Carbonatite metasomatism of the oceanic upper mantle: Evidence fromclinopyroxenes and glasses in ultramaflc xenoliths of Grande Comore, Indian Ocean. Jour. Petrol., v.40, pp.133–165.

    Article  Google Scholar 

  • Dickinson, W. R. (1962) Metasomatic quartz keratophyre in central Oregon. Amer. Jour. Sci. v.260, pp.249–266

    Article  Google Scholar 

  • Donnelly, T. W. (1966) Geology of St. Thomas and St. John, U.S. Virgin Islands. Geol. Soc. Amer. Mem., v.98, pp.85–176.

    Google Scholar 

  • Draper, D.S. and Green, T.H. (1997) P-T phase relations of silicic, alkaline, aluminous mantle-xenolith glasses under anhydrous and C-O-H fluid-saturated conditions. Jour. Petrol., v.38, pp.1187–1224.

    Article  Google Scholar 

  • Falloon, T.J., Green, D.H., O’Neill, H.S.T.C., and Hibberson, W.O., (1997) Experimental tests of low degree peridotite partial melt compositions: Implications for the nature of anhydrous near-solidus peridotite melts at GPa. Earth. Planet. Sci. Lett., v.152, p.149.

    Article  Google Scholar 

  • French, J.E., Heaman, L.M., Chacko, T. and Srivastava, R.K. (2008): 1981–1893 Ma Southern Bastar-Cuddapah mafic igneous events, India: a newly recognized large igneous province. Precambrian Res., v.60, pp.308–322.

    Article  Google Scholar 

  • Ghabrial, D. S., Ali-Bik, MD. W. and Wahab, W. A. (2013) Albitites of Tarr Complex, Kid area southeastern Sinai: petrology, geochemistry and petrogenesis. Jour. Appl. Sci. Res., v.9(7), pp.4443–4462.

    Google Scholar 

  • Goswami, S., Dey, S., Zakaulla, S., Verma, M.B. (2020) Active rifting and bimodal volcanism in Proterozoic Papaghni sub-basin, Cuddapah basin (Andhra Pradesh), India. Jour. Earth. Sys. Sci., v.129(21), doi:https://doi.org/10.1007/s12040-019-1278-3

  • Goswami, S., Upadhya, P.K., Bhagat, S., Zakaulla, S., Bhatt, A.K., Natarajan, V., Dey, S. (2018) An approach of understanding acid volcanic and tuffaceous volcaniclastics from field studies: A case from Tadpatri Formation, Proterozoic Cuddapah Basin, Andhra Pradesh, India. Jour. Earth. Sys. Sci., v.127, pp.20, doi:https://doi.org/10.1007/s12040-019-0929-0

    Article  Google Scholar 

  • Gupta, S. and Rai, S.S. (2005): Structure and evolution of south Indian Crust using teleseismic waveform modelling. Himalayan Geol., v.26, pp.109–123.

    Google Scholar 

  • Hirschmann, M.M., Baker, M.B. and Stolper, E.M., (1998) The effect of alkalis on the silica content of mantle-derived melts: Geochim. Cosmochim. Acta, v.62, pp.883–902

    Article  Google Scholar 

  • Johannsen, A. (1932) A Descriptive Petrography of the Igneous Rocks. v.11, The Quartz-bearing Rocks. Univ. of Chicago Press.

  • Johannsen, A. (1937) A Descriptive Petrography of the Igneous Rocks. v.11, The Intermediate Rocks. Univ. of Chicago Press

  • Kale, V.S., Saha, D., Patranabis-Deb, S., Sesha Sai, V. V., Tripathy, V., Patil-Pillai, S. (2020) Cuddapah Basin, India: A Collage of Proterozoic Subbasins and Terranes Proc. INSA, v.86, pp.137–166 doi:https://doi.org/10.16943/ptinsa/2020/49820.

    Google Scholar 

  • Kamal Azer, M., Robert, J. S., Kimura, J-I (2010) Origin of a late Neoproterozoic (605 ± 13 Ma) intrusive carbonate-albitite complex in Southern Sinai, Egypt. Internat. Jour Earth Sci., v.99, pp.245–267.

    Article  Google Scholar 

  • King, W. (1872) On the Kadapah and Karnul Formations in the Madras Presidency. Mem. Geol. Surv. India, v.8., pt.1, pp.1–346.

    Google Scholar 

  • Kushiro, I., (1996) Partial melting of a fertile mantle peridotite at high pressures: An experimental study using aggregates of diamond. In: Basu, A. and Hart, S.R. (Eds.), Earth processes: Reading the isotopic code. Amer. Geophys. Union Monograph, v.95, pp.109–122.

  • Lakshminarayan, G., Bhattacharjee, S., Naidu Rama (2001) Sedimentation and stratigraphic Framework in the Cuddapah Basin, AP. Proc. of the National Seminar Commemorating Dr. M. S. Krishnan Birth Centenary. Geol. Surv. India Spec. Publ., v.55(2), pp.31–57.

    Google Scholar 

  • Mall, D. M., Pandey, O.P., Chandrakala, K. and Reddy, P.R. (2008) Imprints of a Proterozoic tectonothermal anomaly below the 1.1 Ga kimberlitic province of Southwest Cuddapah basin, Dharwar craton (Southern India). Geophys. Jour. Internat., v.172, pp.422–438

    Article  Google Scholar 

  • Matin, A. (2014) Tectonics in the Cuddapah Fold Thrust Belt in the Indian shield, Andhra Pradesh, India and its implication on the crustal amalgamation of India and Rayner craton of Antarctica during Neoproterozoic. Internat. Jourr. Earth. Sci., v.103, pp.7–22.

    Article  Google Scholar 

  • Meijerink, A.M.J., Rao, D.P. and Rupke, J. (1984) Stratigraphic and structural development of the Precambrian Cuddapah Basin, SE India. Precambrian Res., v.26, pp.57–104.

    Article  Google Scholar 

  • Mezger, K. and Cosca, M.A. (1999) The thermal history of the Eastern Ghats belt (India) as revealed by U-Pb and 40Ar/39Ar dating of metamorphic and magmatic minerals: Implications for the SWEAT correlation. Precambrian Res., v.94, pp.251–271.

    Article  Google Scholar 

  • Mitra, R., Chakrabarti, G. and Shome, D. (2018) Geochemistry of the Palaeo-Mesoproterozoic Tadpatri shales, Cuddapah Basin, India: implications on provenance, paleoweathering and paleoredox conditions. Acta Geochimica, v.37, pp.715–733.

    Article  Google Scholar 

  • Murthy, Y.G.K., Babu Rao, V., Guptasarma, D., Rao, J.M., Rao, M.N. and Bhattacharji, S. (1987) Tectonic, petrochemical and geophysical studies of mafic dike swarms around the Proterozoic Cuddapah basin, South India. In: H.C. Halls, and W.F. Fahrig (Eds.), Mafic dyke swarms. Geol. Assoc. Canada Spec. Paper, v.34, pp.303–316.

  • Nagaraja Rao, B.K., Rajukar, S.T., Ramalingaswamy, G. and Ravindra Babu, B. (1987) Stratigraphy, structure and evolution of Cuddapah Basin. In: Purana Basins of Peninsular India. Mem. Geol. Soc. India, no.6, pp.33–86.

  • Neumann, E.R., and Wulff-Pedersen, E. (1997) The origin of highly silicic glass in mantle xenoliths from the Canary Islands: Jour. Petrol., v.38, pp.1513–1539.

    Article  Google Scholar 

  • Patranabis-Deb, S., Saha, D. and Tripathy, V. (2012) Basin stratigraphy, sea-level fluctuations and their global tectonic connections—evidence from the Proterozoic Cuddapah Basin. Geol. Jour., v.47 pp.263–283.

    Google Scholar 

  • Pin, C., Paquette, J.L., Monchoux, P., Hammouda, T. (2001) First field-scale occurrence of Si-Al-Na±rich low-degree partial melts from the upper mantle. Geol. Soc. Amer., v.29(5), pp.451–454

    Google Scholar 

  • Polito, P. A., Kyser, T.K. and Stanley, C. (2007) The Proterozoic, albititehosted, Valhalla uranium deposit, Queensland, Australia: a description of the alteration assemblage associated with uranium mineralization in diamond drill hole.. Mineralium Deposita, v.39, doi: https://doi.org/10.1007/s00126-007-0162-2.

  • Rai, S.S., Priestly, K., Suryaprakasan, K., Srinagesh, D., Gaur, V.K., Zu, Z. (2003) Crustal shear velocity structure of south Indian shield. Jour. Geophys. Res., v.108, B2, pp.2088, dio:https://doi.org/10.1029/2002JB001776.

    Article  Google Scholar 

  • Ramasamy, R., Subramanian, SP. and Sundaravadivelu, R. (2013) Mineralization of galena in an aplitic albitite from carbonatite complex of Tiruppattur, Tamil Nadu, India. IOSR. Jour. Appl. Geol. Geophys., v.1(3), pp 54–65.

    Article  Google Scholar 

  • Raterron, P., Bussod, G.Y., Doukhan, N., and Doukhan, J.C. (1997) Early partial melting in the upper mantle: An A.E.M. study of a lherzolite experimentally annealed at hypersolidus conditions. Tectonophysics, v.279, pp.79–91.

    Article  Google Scholar 

  • Robinson, J.A.C., Wood, B.J., and Blundy, J.D. (1997) The beginning of melting of fertile and depleted peridotite at 1.5 GPa. Earth Planet. Sci. Lett., v.155, pp.97–111.

    Article  Google Scholar 

  • Roy, S.K. (1990) The Albitite line of northern Rajasthan. Jour. Geol. Soc. India, v.36, pp.413–423.

    Google Scholar 

  • Saha, D. and Tripathy, V. (2012) Palaeoproterozoic sedimentation in the Cuddapah Basin south India and regional tectonics — a review In: Mazumder, R. and Saha, D. (Eds.), Paleoproterozoic of India. Geol. Soc. London Spec. Publ., v.365, pp.159–182.

  • Saha, D., Chakraborty, S. and Tripathy, V. (2010) Intracontinental Thrusts and Inclined Transpression along Eastern Margin of the East Dharwar Craton, India. Jour. Geol. Soc. India, v.75, pp.323–337.

    Article  Google Scholar 

  • Schermerhorn, L.J.G. (1973) What is Keratophyre? Lithos, v.6, pp.1–11.

    Article  Google Scholar 

  • Schiano, P., and Clochiatti, R. (1994) Worldwide occurrence of silica-rich melts in sub-continental and sub-oceanic mantle minerals: Nature, v.368, pp.621–624

    Article  Google Scholar 

  • Sen, S.N. and Narasimha Rao, C.H. (1967) Igneous activity in Cuddapah Basin and adjascent areas and suggestions on the petrography of the basin. Symposium on Upper Mantle Project. NGRI, pp.49–50.

  • Sesha Sai, V.V., Tripathy, V., Bhattacharjee, S., Khanna, T.C. (2017) Palaeoproterozoic magmatism in the Cuddapah Basin, India. Jour. Indian Geophys. Union., v.21(6), pp.516–525.

    Google Scholar 

  • Sheppard, S., Rasmussen, B., Zi, J.W., Sekhar, S., Sarma, S., Ram Mohan, M., Krape, B., Wilde, S.A. and McNaughton, N.J. (2017) Sedimentation and magmatism in the Paleoproterozoic Cuddapah Basin, India: Consequences of lithospheric extension. Gondwana Res., v.48, pp.15316.

    Article  Google Scholar 

  • Shimron, A.E. (1975) Petrogenesis of the Tarr albitite-carbonatite complex, Sinai Peninsula. Mineral. Magz., v.40, pp.13–24

    Article  Google Scholar 

  • Sleep, N.H. (1988) Tapping of melt by veins and dikes. Jour. Geophys. Res., v.93, pp.10 255–10 272.

    Article  Google Scholar 

  • Tewari, H.C. and Rao, V.K. (1987) A high velocity Intrusive Body in the Upper Crust in the Southwestern Cuddapah Basin as delineated by Deep Seismic Sounding and Gravity modelling. In: Purana Basins of Peninsular India. Mem. Geol. Soc. India, no.6, pp.349–356.

  • Walter, M.J., and Presnall, D.C., (1994) Melting behavior of simplified lherzolite in the system CaO-MgO-Al2O3-SiO2-NaO from 7 to 35 kbar: Jour. Petrol., v.35, pp.329–359.

    Article  Google Scholar 

  • Wilde, A., Otto, A., Jory, J., Macrae, C., Pownceby, M., Wilson, N., Torpy, A. (2013) Geology and Mineralogy of Uranium Deposits from Mount Isa, Australia: Implications for Albitite Uranium Deposit Models. Minerals, v.3, pp.258–283; doi:https://doi.org/10.3390/min3030258.

    Article  Google Scholar 

  • Wulff-Pedersen, E., Neumann, E.R., Vanucci, R., Bottazzi, P., and Ottolini, L. (1999) Silicic melts produced by reaction between peridotite and inflltrating basaltic melts: Ion probe data on glasses and minerals in veined xenoliths from La Palma, Canary Islands. Contrib. Mineral. Petrol., v.137, pp.59–82.

    Article  Google Scholar 

  • Zachariah, J.K., Bhaskar Rao, Y.J., Srinivasan, R. and Gopalan, K. (1999) Pb, Sr and Nd isotope systematic of uranium mineralized stromatolitic dolomites from Proterozoic Cuddapah Supergroup, S. India: constrains on age and provenance. Chem. Geol., v.162, pp.49–64.

    Article  Google Scholar 

Download references

Acknowledgements

First and foremost, we would take this opportunity to express our sincere gratitude to the reviewer whose patient and meticulous review and suggestions have helped us in enormously improving the quality of the work. We thank Dr. Santanu Bhattacharya, Director, Southern Region, GSI for taking keen interest in analysing the sections at EPMA laboratory, GSI Hyderabad. We avail this opportunity to acknowledge all the officers of Chemical Division, Southern Region, GSI, Hyderabad for providing analytical data without which this report would have been incomplete. We would also like to express out gratitude to Dr. Sesha Sai, Director, GSI for his logistic help in course of the last field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasturi Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, K., Mukhopadhyay, P.K. & Nandy, S. Sodic-Silicic Magmatism in Tadpatri Formation- A Study in Quartz Keratophyre and Albitite. J Geol Soc India 97, 227–237 (2021). https://doi.org/10.1007/s12594-021-1671-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-021-1671-9

Navigation