Skip to main content
Log in

Recrystallization and Provenance History of the Upper Kaimur Group Siliciclastics, Son Valley, India: Coupled Petrographic and Fluid inclusion Proxy

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

The Mesoproterozoic Kaimur Group belonging to upper part of Vindhyan Supergroup, conformably overlies the carbonate sequence of Semri Group (Lower Vindhyan) in the Son Valley, central India. The Upper Kaimur Group consists of Dhandraul sandstone, Scarp sandstone and Bijaigarh shale. The detrital contents of the Dhandraul and Scarp sandstones are mainly composed of several varieties of quartz followed by feldspar, rock fragments, micas and heavy minerals. Fluid inclusion studies are carried out on the detrital and recrystallized quartz grains of the Dhandraul and Scarp sandstone to know about the fluid phases already present in the source rock and / or introduced in the recrystallisation process. Fluid micro-thermometry reveals the presence of two types of fluids: (i) bi-phase low saline aqueous inclusions, (ii) bi-phase high saline aqueous inclusion. These fluids were trapped during the development of grain and recrystallization processes. The salinity of these inclusions in the quartz grain is in the range of 5.7 to 13.4% suggests that initially there was good proportion of marine water during the initiation of sedimentation. The provenance of these rocks may be granite/metamorphic rocks of Mahakoshal Group and Chhotanagpur granite-gneisses and minor input from Bundelkhand granite complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anbarasu, K. (2001) Acritarch from Mesoproterozoic Chitrakut formation, Semri group, Chitrakoot area, Central India. Jour. Geol. Soc. India, v.57, pp.179–183.

    Google Scholar 

  • Auden, J.B. (1933) Vindhyan sedimentation in the Son Valley, Mirzapur District. Mem. Geol. Surv. India, v.62, pp.141–250.

    Google Scholar 

  • Banerjee, I. (1964) On some broader aspects of the Vindhyan sedimentation. Proc. Int. Geol. Cong. 22nd session, New Delhi, v.15, pp.189–204.

    Google Scholar 

  • Banerjee, I. (1974) Barrier coastline sedimentation model and the Vindhyan example. Jour. Geol. Min. Met. Soc. India (Golden Jubilee), v.46, pp.101–127.

    Google Scholar 

  • Bengtson, S., Belivanova, V., Rasmussen, B. and Whitehouse, M. (2009) The controversial “Cambrian” fossils of the Vindhyan are real but more than a billion years older. Proc. Natl. Acad. Sci. USA, v.106, pp.7729–7734.

    Article  Google Scholar 

  • Bose, P. K., Banerjee, S. and Sarkar, S. (1997) Slope–controlled seismic deformation and tectonic framework of deposition of Koldaha Shale, India. Tectonophysics, v.269, pp.151–169.

    Article  Google Scholar 

  • Bose, P. K., Sarkar, S., Chakraborty, S. and Banerjee, S. (2001) Overview of Meso–to Neoproterozoic evolution of the Vindhyan basin, Central India (1.4–0.55 Ga). Sediment. Geol., v.141, pp.395–419.

    Article  Google Scholar 

  • Brown, P. E. (1989) FLINCOR: a microcomputer program for thereduction and investigation of fluid inclusion data. Amer. Mineral, v.74, pp.1390–1393.

    Google Scholar 

  • Brown, P. E. and Lamb, W. M. (1989) P–V–T properties of fluids in the system H2O+ CO2+ NaCl: New graphical interpretation and implications for fluid inclusion studies. Geochem. Cosmochem. Acta, v.53, pp.1290–1221.

    Google Scholar 

  • Chakrabarty, R., Basu, A. R. and Chakrabarty, A. (2007) Trace element and Nd isotopic evidence for sediment sources in the mid–Proterozoic Vindhyan basin, Central India. Precambrian Res., v.159, pp.260–274.

    Article  Google Scholar 

  • Chakraborty, C. and Bhattacharyya, A. (1996) Fan–delta sedimentation in a foreland moat: Deoland Formation, Vindhyan Supergroup, Son valley. In: Bhattacharyya, A. (Ed.), Recent Advances in Vindhyan Geology. Mem. Geol. Soc. India, v.36, pp.27–48.

    Google Scholar 

  • Chanda, S. K. and Bhattacharyya, A. (1982) Vindhyan sedimentationand paleogeography: post–Auden developments. In: Valdiya, K.S., Bhatia, S.B. and Gaur, V.K. (Eds.), Geology of Vindhyanchal. Hindustan Publishing Corporation, Delhi, pp.88–101.

    Google Scholar 

  • Crawford, A.R. (1978) Narmada–Son lineament of India, traces into Madagascar. Jour. Geol. Soc. India, v.19, pp.144–153.

    Google Scholar 

  • Crawford, A. R. and Compston, W. (1970) The age of Vindhyan system of peninsular India. Quart. Jour. Geol. Soc. London, v.125, pp.351–371.

    Article  Google Scholar 

  • De, C. (2003) Possible organisms similar to Ediacaran forms from the Bhander Group, Vindhyan Supergroup, Late Neoproterozoic of India. Jour. Asian Earth Sci., v.21, pp.387–395.

    Article  Google Scholar 

  • Gopalan, K., Kumar, S. and Vijayagopala, B. (2013) Depositional history of the Upper Vindhyan succession, central India: Time constraints from Pb–Pb isochron ages of its carbonate components. Precambrian Res., v.233, pp.108–117.

    Article  Google Scholar 

  • Kumar, S. (1976) Stromatolites from the Vindhyan rocks of the Son Valley–Maihar area, districts Mirzapur (U.P.) and Satna (M.P.). Jour. Palaeontol. Soc. India, v.18, pp.13–21.

    Google Scholar 

  • Kumar, S. (2001) Mesoproterozoic megafossil Chuaria–Tawuia association may represent parts of a multicellular plant, Vindhyan Supergroup, Central India. Precambrian Res., v.106, pp.187–211.

    Article  Google Scholar 

  • Kumar, S. (2009) Controversy concerning ‘Cambrian’ fossils from the Vindhyan sediments: a re–assessment. Jour. Palaeontol. Soc. India, v.54, pp.115–117.

    Google Scholar 

  • Kumar, S. and Srivastava, P. (1992) Discovery of microfossils from the nonstromatolitic middle Proterozoic Vindhyan Chert, Chitrakut area, U.P. Jour. Geol. Soc. India, v.38, pp.511–515.

    Google Scholar 

  • Kumar, S., Sharma, S.D., Sreenivas, B., Dayal, A.M., Rao, M.N., Dubey, N. and Chawla, B.R. (2002) Carbon, oxygen and strontium isotope geochemistry of Proterozoic carbonate rocks of the Vindhyan Basin, Central India. Precambrian Res., v.113, pp.43–63.

    Article  Google Scholar 

  • Malone, S.J., Meert, J.G., Banerjee, D.M., Pandit, M.K., Tamrat, E., Kamenov, G.D., Pradhan, V.R. and Sohl, L.E. (2008) Paleomagnetism and detrital zircon geochronology of the Upper Vindhyan Sequence, Son Valley and Rajasthan, India: A ca. 1000 Ma closure age for the Purana Basins? Precambrian Res., v.164, pp.137–159.

    Article  Google Scholar 

  • Mathur, S.M. and Srivastava, J.P. (1962) Algal structures from Fawn Limestone, Semri Series (Lower Vindhyan) in the Mirzapur district, U.P. Rec. Geol. Surv. India, v.87, pp.819–822.

    Google Scholar 

  • Mishra, M. and Sen, S. (2010) Geochemical signatures of Mesoproterozoic siliciclastic rocks of Kaimur Group, Vindhyan Supergroup, Central India. Chinese Jour. Geochem., v.29(1), pp.21–31.

    Article  Google Scholar 

  • Mishra, M. and Sen, S. (2012) Provenance, tectonic setting and source–area weathering of MesoproterozoicKaimur Group, VindhyanSupergroup, Central India. Geol. Acta, v.10, pp.283–293.

    Google Scholar 

  • Misra, R. C. and Awasthi, N. (1962) Sedimentary markings and other structures in the rocks of the Vindhyan Formations of the Son Valley and Maihar–Rewa area, India. Jour. Sediment. Petrol., v.32, pp.764–775.

    Google Scholar 

  • Misra, R. C., Singh, A. K. and Singh, I. B. (1972) Wrinkle marks from lower Rewa Formation (Upper Vindhyan) of Manikpur area, Banda district, Uttar Pradesh, India. Jour. Geol. Soc. India, v.13, pp.286–288.

    Google Scholar 

  • Morad, S., Bhattacharya, A. and Al–Aasam, L. S. (1991) Diagenesis of quartz in Late Proterozoic Kaimur Sandstones, Son Valley, India. Sediment. Geol., v.73, pp.209–225.

    Article  Google Scholar 

  • Nagraju, P., Ray, L., Ravi, G., Vysulu, V., Akiraju, and Roy, S. (2012) Geothermal Investigations in the Upper Vindhyan Sedimentary Rocks of Shivpuri Area, Central India. Jour. Geol. Soc. India, v.80, pp.39–47.

    Article  Google Scholar 

  • Prakash, R. and Dalela, I.K. (1982) Stratigraphy of the Vindhyan in Uttar Pradesh: a brief review. In: Valdiya, K.S., Bhatia, S.B. and Gaur, V.K. (Eds.), Geology of Vindhyanchal. Hindustan Publ. Corp. New Delhi, pp.55–79.

    Google Scholar 

  • Quasim, M. A., Ahmad, A. H. M. and Ghosh, S. K. (2017 A) Depositional environment and tectono–provenance of Upper Kaimur Group sandstones, Son Valley, Central India. Arabian Jour. Geosci., 10(4) DOI 10.1007/s12517–016–2783–1.

    Book  Google Scholar 

  • Quasim, M.A., Khan, I., Ahmad, A.H.M. (2017 B) Integrated Petrographic, Mineralogical, and Geochemical Study of the Upper Kaimur Group of Rocks, Son Valley, India: Implications for Provenance, Source Area Weathering and Tectonic Setting. Jour. Geol. Soc. India, v.90, pp.467–484.

    Article  Google Scholar 

  • Raha, P. K. and Sastry, M. V. A. (1982) Stromatolites and Precambrian stratigraphy in India. Precambrian Res., v.18, pp.293–318.

    Article  Google Scholar 

  • Rasmussen, B., Bose, P.K., Sarkar, S., Banerjee, S., Fletcher, I.R. and McNaughton, N.J. (2002) 1.6Ga U–Pb Zircon ages for the Chorhat sandstone, Lower Vindhyan, India: possible implication for early evolution of animals. Geology, v.30, pp.103–106.

    Google Scholar 

  • Ray, J. S. (2006) Age of the Vindhyan Supergroup: a review of recent findings. Jour. Earth Syst. Sci., v.115, pp.149–160.

    Article  Google Scholar 

  • Ray, J. S., Martin, M. W., Veizer, J. and Bowring, S. A. (2002) U–Pb zircon dating and Sr isotope systematics of Vindhyan Supergroup, India. Geology, v.30, pp.131–134.

    Article  Google Scholar 

  • Roedder, E. (1984) Fluid Inclusions. Reviews in Mineralogy. Min. Soc. Am. Washington D.C., v.12, pp.644

    Google Scholar 

  • Sachan, H. K. and Ghosh, S.K. (1996) Fluid inclusion study of the Neoproterozoic Nagthat siliciclastic sediments, NW Kumaun Lesser Himalaya: implications to quartz cementation history. Jour. Geol. Soc. India, v.47, pp.107–114.

    Google Scholar 

  • Sarkar, S. (1980) Ripple marks in intertidal Lower Bhander sandstone (Late Proterozoic), Central India: a morphological analysis. Sediment. Geol., v.29, pp.241–282.

    Article  Google Scholar 

  • Sarkar, S., Banerjee, S., Chakraborty, S. and Bose, P. K. (2002) Shelfstorm flow dynamics: insight from the Mesoproterozoic Rampur Shale, central India. Sediment. Geol., v.147, pp.89–104.

    Article  Google Scholar 

  • Sarkar, S., Eriksson, P. G. and Chakraborty, S. (2004) Epeiric sea formation on Neoproterozoic supercontinent break–up: a distinctive signature in coastal storm bed amalgamation. Gondwana Res., v.7, pp.313–322.

    Article  Google Scholar 

  • Sastry, M.V.A. and Moitra, A.K. (1984) Vindhyan stratigraphy–a review. Mem. Geol. Surv. India, v.116, pp.109–148.

    Google Scholar 

  • Sen, S. (2010) Geochemistry and provenance of the siliciclastics from Kaimur Group, Vindhyan Supergroup, Mirzapur and Sonbhadra Districts, Uttar Pradesh, India. Ph.D. thesis, Banaras Hindu University, Varanasi, 221p.

    Google Scholar 

  • Shepherd, T.J., Rankin, A.H. and Alderton, D.H.M. (1985) A practical guide to fluid inclusions studies. Blackie & Sons, Glasgow.

    Google Scholar 

  • Singh, I.B. (1976) Depositional environments of the Upper Vindhyan sediments in the Satna–Maihar area, Madhya Pradesh, and its bearing on the evolution of the Vindhyan sedimentary basins. Jour. Palaeontol. Soc. India, v.19, pp.48–70.

    Google Scholar 

  • Soni, M.K., Chakraborty, S. and Jain, S.K. (1987) Vindhyan Supergroup–a review, In: Purana basins of India. Jour. Geol. Soc. India, v.6, pp.87–138.

    Google Scholar 

  • Srivastava, D.C. and Sahai, A. (2003) Brittle tectonics and pore–fluid conditions in the evolution of the Great Boundary Fault around Chittaurgarh, Northwestern India. Jour. Struct. Geol., v.25, pp.1713–33.

    Article  Google Scholar 

  • Stipp, M. and Kunze, K. (2008) Dynamic recrystallization nearthe brittleplastic transition in naturally and experimentallydeformed quartz aggregates. Tectonophysics, v.448, pp.77–97.

    Article  Google Scholar 

  • Stipp, M., Stünitz, H., Heilbronner, R. and Schmid, S. M. (2002) The eastern Tonale fault zone: a ‘natural laboratory’ for crystalplastic deformation of quartz over a temperature range from250 to 700°C. Jour. Struct. Geol., v.24, pp.1861–1884.

    Article  Google Scholar 

  • Vinogradov, A.P., Tugarinov, A.I., Zikhov, C.I., Stanikova, N.I., Bibikova, E.V. and Khorre, K. (1964) Geochronology of Indian Precambrian. Report 22nd Int. Geol. Cong., New Delhi, v.10, pp.553–567.

    Google Scholar 

  • Visser, W. (1982) Maximum diagenetic temperature in a petroleum source rock from Venezuela by fluid inclusion geothermometry. Chem. Geol., v.37, pp.95–101.

    Article  Google Scholar 

  • Wilkinson, J.J., Rankin, A.H. and Farmer, C.J. (1990) Detailed fluid inclusion studies of carbonate cements and fracture filling from samples provided by NV Turske Shell. Shell Oil company Report (unpublished).

    Google Scholar 

  • Worden, R. and Morad, S. (2000) Quartz cement in oil field sandstones: a review of the critical problems. In: Worden, R.H. and Morad, S. (Eds.), Quartz Cementation in sandstones. Int. Assoc. Sedimentol., Special Publication, v.29, pp.1–20.

    Google Scholar 

  • Zhang, Y.G. and Frantz, J.D. (1987) Determination of thehomogenization temperatures and densities of supercritical fluids in the system. Nacl–Kcl–CaCl2–H2O using synthetic fluid inclusions. Chem. Geol., v.64, pp.335–350.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Quasim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quasim, M.A., Ahmad, A.H.M., Sachan, H.K. et al. Recrystallization and Provenance History of the Upper Kaimur Group Siliciclastics, Son Valley, India: Coupled Petrographic and Fluid inclusion Proxy. J Geol Soc India 93, 177–184 (2019). https://doi.org/10.1007/s12594-019-1148-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-019-1148-2

Navigation