Skip to main content
Log in

Petrogenesis of Neoarchean Mangikhuta Volcanic Complex, Dongargarh Supergroup, Central India: Insights from Relict Clinopyroxene Chemistry

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

Clinopyroxene relict magmatic phases in Neoarchean Mangikhuta volcanics are described in detail in terms of their geochemistry for the first time, and their petrogenetic insights obtained. EPMA study indicates their restricted compositional range. Elemental variation diagrams show progressive variation of Al, Ca, Si, Fe+3, Ti, Cr, Aly and Aly/Alz, Ti/Al, Fe+2/Fe+3 elemental ratios with fractionation, which establishes their equilibrium conditions during crystallization differentiation. On pyroxene quadrilateral, they plot along fractionation trend of augite. Ca-Al Tschermak, esseneite and Tp are the “other components” in these clinopyroxenes. Progressive variation of other components indicates decrease of pH2O and fO2 of the magma during fractionation. Other components of clinopyroxenes and chondrite normalized whole rock REE patterns indicate minor fractionation of plagioclase in primitive magma. However, plagioclase became a major precipitating phase in later stage of fractionation. Clinopyroxene geobarometer and geothermometer indicate 0–3 kb pressure and 1100–1250° C temperature of crystallization of Mangikhuta clinopyroxenes. Mangikhuta complex have typically high normative orthopyroxene content (35–45 vol. %) now altered to Mg-Al-Fe chlorite. The Mangikhuta magma was highly aqueous and after genesis, it ascended rapidly giving rise to silica-alumina-calc-alkaline series rocks. In the late magmatic history, there was reaction between orthopyroxene and water and plagioclase and water so that Mg(Al,Fe)SiO3 pyroxene converted to Mg(Fe, Al) chlorite and prehnite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asthana, D. (1991) Relict Clinopyroxenes from within plate Metadolerites of the Petroi Metabasalt, the New England Fold Belt, Australia. Min. Magz. v.55(381), pp.549–561.

    Article  Google Scholar 

  • Asthana, D., Dash, M.R., Pophare, A.M and Khare, S.K., (1996) Interstratified low-high Ti volcanics from arc related Khairagarh Group of Central India. Curr. Sci., v.71, pp.304–306.

    Google Scholar 

  • Asthana, D., Sirish K., Vind A. K., Zehra F, Kumar H, Pophare A M. (2017) Geochemical ûngerprinting of <“2.5 Ga fore-arc-arc-back-arc related magmatic suites in the Bastar Craton, central India. Jour. Asian Earth Sci., v.157, pp.218–243.

    Article  Google Scholar 

  • Balaram V. (1995) Developments and trends in ICP-MS and its influence on recent changes in trace element analyses. Curr. Sci., v.69, pp. 640–649.

    Google Scholar 

  • Balaram V. (2002) ICP–MS techniques in elemental and isotopic analysis of Lanthanides and Actinides. Jour. Indian Chem. Soc., v.79(6), pp.479–485.

    Google Scholar 

  • Beccaluva, L., Macciota, G., Piccardo, G B. and Zeda, O. (1989) Clinopyroxene composition of Ophiolitic basalts as petrogenetic indicator. Chem. Geol., v.77, pp.165–182.

    Article  Google Scholar 

  • Brown G.M. (1957) Pyroxenes from early and middle stages of fractionation of Skaergaard intrusion, East Greenland. Min. Magz., v.31, pp.511–543.

    Google Scholar 

  • Basalt Volcanism Study Project (1981) Basalt volcanism in terrestrial planets. 1286p, Pergamon, New York.

  • Cawood, P.A., Hawkesworth, C.J., Pisarevsky, S.A., Dhuime, B., Capitanio, F.A., Nebel, O. (2018) Geological archive of the onset of plate tectonics. Phil. Trans. Royal. Soc., A 376, 20170405.

    Google Scholar 

  • Cole, J.W. and Nairon, J.A. (1975) Catalogue of active volcanoes of the world, 22, New Zealand, IAVCEI.

    Google Scholar 

  • Condie, K.C. and Kroner, A., (2008) When did plate tectonics begin? Evidence from Geologic record. Geol. Soc. Amer. Spec. Paper v.440, pp.1–14.

    Google Scholar 

  • Cox, K.G., Bell, J.D. and Pankhurst, R.J., (1979) The Interpretation of Igneous Rocks. George Allen and Unwin, London, 452p.

    Book  Google Scholar 

  • Davies F.J., Grant, R.W.E. and Whitehead, R.E.S. (1979) Immobile trace elements and Archaean volcanic stratigraphy in the Timmins mining area, Ontario. Can. Jour. Earth Sci., v.16, pp.305–311.

    Article  Google Scholar 

  • Dhuime, B., Wuestefeld, A., Hawkesworth, C.J., (2015) Emergence of modern continental crust about 3 billion years ago. Nature Geosci. v.8, pp. 552–555.

    Article  Google Scholar 

  • Dhuime B, Hawkesworth C J, Delavault H, Cawood P A., (2018) Rates of generation and destruction of the continental crust: implications for continental growth. Phil.Trans.R.Soc. A376: 20170403. https://doi.org/10.1098/rsta.2017.0403

    Article  Google Scholar 

  • Gaetani G A, Grove, T.L. and Bryan, W. B., (1993) The influence of water on the petrogenesis of subduction related igneous rocks. Nature, v.365, pp. 332–334.

    Article  Google Scholar 

  • Gaetani G A, Grove T L, Bryan W B, (1994) Experimental phase relations of basaltic andesite from the hole 839B under hydrous and anhydrous conditions. Proc. ODP, Leg 135, pp.557–564.

    Google Scholar 

  • Gibb, F G F., (1973) The zoned Clinopyroxenes of the Shiant Isles sill, Scotland. J. Petrol., v.14, pp.203–230.

    Article  Google Scholar 

  • Govil, P.K., (1985) X-ray fluorescence analysis of major, minor and selected trace elements in new IWG reference rock samples. Jour.Geol. Soc. India, v.26, pp.38–42.

    Google Scholar 

  • Gupta, A. K. (2007) Petrology of Igneous Rocks. p. 469, Narosa Pub. New Delhi.

    Google Scholar 

  • Gupta, A.K., Onuma, K., Yagi, K., Lidiak, E.G. (1973) Effect of silica concentration on the solubility of Titanium in clinopyroxene in the system Diopside — CaTiAl2O6 — SiO2. Contrib. Min. Petrol. v.41, 4, pp.333–344.

    Article  Google Scholar 

  • Hastie A. R, Kerr A C, McDonald I, Mitchell S F, Pearce J A, Wolstencroft and Millar I., (2010) Do Cenozoic Analogues support a plate tectonic origin of Earth’s earliest continental crust. Geology v. 38, 6, pp. 495–498.

    Article  Google Scholar 

  • Hawkesworth C J, Gallagher K., Hergt J M and McDermott, F., (1994) Destructive plate margin magmatism, Geochemistry and melt generation. Lithos, v.33, pp.169–188.

    Article  Google Scholar 

  • Hawkesworth C J and Brown M., (2018) Earth dynamics and the development of plate tectonics. Phil.Trans.R.Soc. A376: 20180228.

    Article  Google Scholar 

  • Inoue, A., Inoue, S. and Utada, M., (2018) Application of chlorite thermometry to estimation of formation of temperature and redox conditions. Clay Minerals, v. 53, 2, pp.143–158.

    Article  Google Scholar 

  • Jafri S. H., Shailja V., Ramesh S. L., (2007) Occurrence of quench plagioclase and pyroxene crystals in Sitagota Mafic volcanics of the Dongargarh Super group, Central India. Jour. Geol. Soc. Ind. v. 70, 5, pp.787–792.

    Google Scholar 

  • Keleman P. B., (1995) Genesis of high Mg # Andesites and the continental crust. Contrib. Min. Petrol. v.120, 1, pp.1–19.

    Article  Google Scholar 

  • Kersting, A.B. and Arculus, R.J., (1994) Klyuchevskoy Volcano, Kamchatka, Russia: The Role of High-Flux Recharged, Tapped, and Fractionated Magma Chamber(s) in the Genesis of High-Al2O3 from High-MgO Basalt. J Petrol. v.35, pp.1–41.

    Article  Google Scholar 

  • Khanna, T.C. Bizimis, M., Barbeau, Krishna, A.K., Sesha Sai, V.V. (2019) Evolution of ca.2.5 Ga Dongargarh volcano-sedimentary Supergroup, Bastar craton, Central India: Constraints from zircon U-Pb geochronology, bulk rock geochemistry and Hf — Nd isotope systematics. Earth Sci. Rev., v.190, pp. 273–309.

    Article  Google Scholar 

  • Kuno, H. (1968) Lateral variation of basalt magma type across continental margin and island arcs. Bul. Vol. Series 2, v.29, pp.195–222.

    Article  Google Scholar 

  • Kushiro, I., (1969) Clinopyroxene solid solution formed by reactions between Diopside and plagioclase at high pressure. Min. Soc. Am. Spl. Paper, v.2, pp.179–191.

    Google Scholar 

  • Kushiro, I., (1969) The system forsterite — diopside — SiO2 with or without water at high pressures. Am. J. Sci., (Schairer vol.) 267, 4, pp.269–294.

    Google Scholar 

  • Leterrier, J., Maury, R. C., Thonon, P., Girard, D. and Marchal, M., (1982) Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series. Earth Planet. Sci. Lett., v.59, pp. 139–154.

    Article  Google Scholar 

  • Lindsley, D. H (1983) Pyroxene Thermometry. Am. Min. v.68, pp.477–493.

    Google Scholar 

  • Longjam, K.C., Ahmad, T., (2012) Geochemical characterization and Petrogenesis of Proterozoic Khairagarh volcanics: implication for Precambrian crustal evolution. Geol. Jour., v.47, pp.130–143.

    Google Scholar 

  • Loucks, R.R. (1990) Discrimination of ophiolitic from nonophiolitic ultramafic-mafic allochthons in orogenic belts by the Ti/Al ratio in clinopyroxene. Geology, v.18, pp.346–349.

    Article  Google Scholar 

  • Manikyamba, C., Santosh, M., Chandan Kumar, B., Rambabu, S., Li Tang, Saha, A., Arubam, C. Khelena, Ganguly, S., Singh, D., Subba Rao, D.V. (2016) Zircon U-Pb geochronology, Lu-Hf isotope systematics, and geochemistry of bimodal volcanic rocks and associated granitoids from Kotri Belt, Central India: Implications for Neoarchean-Neoarchean crustal growth. Gondwana Res. v.38, pp.313–333.

    Article  Google Scholar 

  • McDonough, W.F. and Sun, S.S., (1995) The Composition of the Earth; Chemical Geol., v.120, pp.223–253.

    Article  Google Scholar 

  • Miyashiro A. (1974) Volcanic rock series in island arc and active continental margins. Amer. Jour. Sci., v.274, pp.321–355.

    Article  Google Scholar 

  • Morimoto, N., Fabries, J., Ferguson, A.K., Ginzberg, I.V., Ross, M., Seifert, F.A., Zussman, J., Aoki, K., Gottardi, G., (1988) Nomenclature of Pyroxenes. Mineral. Magz., v.52, pp.535–550.

    Article  Google Scholar 

  • Neogi, S., Miura, H. and Hariya, Y. (1996) Geochemistry of Dongargarh volcanic rocks, Central India: Implications for the Precambrian mantle. Precambrian Res., v.76, pp.77–91.

    Article  Google Scholar 

  • Nimis P. (1995) A Clinopyroxene geobarometer for basaltic systems based on crystal structure modelling. Contrib. Mineral. Petrol., v.121, pp.115–125.

    Article  Google Scholar 

  • Onuma, K. (1983) Effect of oxygen fugacity of fassaitic pyroxenes. Jour. Fac. Sci., Hokkaido Univ., Ser., IV, v.20, pp.185–194.

    Google Scholar 

  • Patel S.C., Asthana D., Acharya C.S. (2008) Prehnite and Pumpelleyite in the Archaean Sitagota Volcanics near Deori, Bhandara District, Maharashtra. Jour. Geol. Soc. India, v.72(2), pp.208–212.

    Google Scholar 

  • Pearce, J.A. (1982) Trace Element Characteristics of Lavas from Destructive Plate Boundaries. In: Thorpe, R.S. (Ed.), Andesites: Orogenic Andesites and Related Rocks, John Wiley and Sons, pp.252–548.

  • Pearce J. A., (1996) User guide to Basalt discriminant diagram. In Wyman D.A. Trace element geochemistry of volcanic rocks, Applications for massive sulphide exploration. Geol. Assoc. Canada. v.12, pp.79–113.

    Google Scholar 

  • Pearce J.A. (2014) Geochemical Fingerprinting of the Earth’s Oldest Rocks. Geology, v. 42; pp.175–176.

    Article  Google Scholar 

  • Pearce, J.A. and Cann, J.R. (1973) Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses. EPSL, v.19, pp.290–300.

    Article  Google Scholar 

  • Pearce, J.A. and Peate D.W. (1995) Tectonic implications of composition of volcanic arc magmas. Ann. Rev. Earth Planet. Sci., v.23, pp.251–285.

    Article  Google Scholar 

  • Pearce J.A. and Stern J.S. (2006) Origin of Back-Arc Basin Magmas: Trace Element and Isotope Perspectives. Amer. Geophys. Union, Geophysical Monograph Series, v.166, pp.63–86.

    Google Scholar 

  • Putirka, K.D., Mikaelian, H., Ryerson, F., and Shaw, H. (2003) New clino-pyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with application to lavas from Tibet and the Snake River Plain, Idaho. American Mineral., v.88, pp.1542–1554.

    Article  Google Scholar 

  • Sarkar, S.N., (1957) Stratigraphy and tectonics of Dongargarh System: A new system in the Precambrian of Bhandara — Durg Balaghat area, Bombay and M.P. Indian Inst. Tech. Jour. Sci. Eng. Res., v.1, pp.237–268.

    Google Scholar 

  • Sarkar S.N., Sarkar S.S., Ray S.L. (1994) Geochemistry and genesis of the Dongargarh Supergroup Precambrian rocks in Bhandara — Durg Region, Central India. Indian Jour. Earth Sci., v.21, pp.117–126.

    Google Scholar 

  • Satyanarayanan M., Balaram V., Sawant S., Subramanyam K. S. V., Krishna G. V., Dasaram B., Manikyamba C., (2018) Rapid determination of REEs, PGEs, and other trace elements in geological and environmental materials by high resolution inductively coupled plasma mass spectrometry. Atomic Spectrometry — Norwalk Connecticut, v.39, 1, pp.1–15.

    Google Scholar 

  • Schweitzer, E.L., Papike J.J., Bence A.E. (1979) Statistical analysis of Clinopyroxenes from deep sea basalt. Amer. Mineral. v.64, pp.501–513.

    Google Scholar 

  • Sensarma, S. and Mukhopadhyay, D. (2014) Stratigraphy of ∼2.5 Ga Dongargarh Belt, Central India: Key Observations and Suggested Revisions. Gondwana Geol. Magz. Spec., v.16, pp.41–48.

    Google Scholar 

  • Sensarma, S. and Palme, H. (2013) Silicate liquid immiscibility in the ∼2.5 Ga Fe-rich andesite at the top of the Dongargarh large igneous province (India). Lithos, v.170, pp.239–251.

    Article  Google Scholar 

  • Sisson and Grove, (1993) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib. Mineral. Petrol., v.113, pp.143–166.

    Article  Google Scholar 

  • Thompson, R.N. (1974) Some high-pressure pyroxenes. Mineral. Magz., v.39, pp.768–787.

    Article  Google Scholar 

  • Tilley, C.E., Yoder, H.S. and Schairer, J.F. (1967) Melting relation of igneous rock series. Carnegie Inst. Wash. Yb., v.66, pp.450–457.

    Google Scholar 

  • Tormey, D.R., Grove, T.L. and Bryan, W.B. (1987) Experimental petrology of normal MORB near the Kame Fracture zone: 22–25 N, Mid Atlantic Ridge. Contrib. Mineral. Petrol., v.86, pp.121–139.

    Article  Google Scholar 

  • Wilcox, R.E. (1956) Petrology of Paricutin volcanic complex, Mexico. US Geol. Surv. Bull. v.965, C, pp.281–353.

    Google Scholar 

Download references

Acknowledgements

Authors are grateful to Prof Alok K Gupta (Raja Ramanna fellow and ex-Director National Center for Experimental Mineralogy and Petrology, University of Allahabad, India) for detail review and update of manuscript. Authors also thank Prof Rajesh K Srivastava, (Center of Advanced study in Geology, Banaras Hindu University Varanasi, India) for critical review of manuscript, which led to refining of content. Authors thank Council of Scientific and Industrial Research (CSIR), Govt. of India for partial funding of this work. The work forms part of doctoral thesis of first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar Khare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khare, S.K., Asthana, D. Petrogenesis of Neoarchean Mangikhuta Volcanic Complex, Dongargarh Supergroup, Central India: Insights from Relict Clinopyroxene Chemistry. J Geol Soc India 96, 363–373 (2020). https://doi.org/10.1007/s12594-020-1565-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-020-1565-2

Navigation