Skip to main content
Log in

Volatiles associated with granitoid intrusives around orogenic gold deposits in Ramagiri and Penakacherla regions of Eastern Dharwar Craton, South India

  • Published:
Journal of the Geological Society of India

Abstract

The nature of magmatic fluid has been tested well in varied type of auriferous deposits. However, in context of orogenic gold deposits, there are not many studies that clearly point out the nature of fluids exsolved out of crystallizing granitoids. This study compares the fluid of late-stage magmatic origin with that causative for mineralization in gold camps of Ramagiri and Penakacherla in Eastern Dharwar Craton. Various types of fluid inclusion assemblages (FIAs) were identified in granitoid matrix quartz, pegmatites, quartz segregations and greenstone-hosted goldquartz veins. The aqueous-carbonic (CH4-poor) and carbonic (CH4- and H2O-poor) inclusions are most common in pegmatites and quartz segregations, while the matrix quartz grains are generally devoid of CO2-bearing inclusions. On the other hand, auriferous veins in greenstone rocks show predominance of low to moderate salinity, aqueous-carbonic (variably CH4-bearing) inclusions. Inconsistencies in H2O/CO2 ratio and final homogenization properties of aqueous-carbonic inclusions within individual FIAs, apart from common occurrence of the FIA comprising aqueous-carbonic, carbonic and aqueous biphase inclusions, point to immiscibility in the ore fluid regime. Based on estimated microthermometric results, we attempt to deduce the evolution path of magmatic fluid with respect to that of fluid in ore zone. On this basis, a case for magmatic derivation of the ore fluid has been put forward. The difference in magmatic and auriferous fluid in terms of CO2/CH4 ratio are justifiable and allows us to visualize that aqueous-carbonic composition of orogenic gold fluid does not signify its exclusive origin through any particular process (or source), for example metamorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balakrishnan, S., Rajamani, V. and Hanson, G. N. (1999) U-Pb ages for zircon and titanite from the Ramagiri area, southern India: Evidence for accretionary origin of the eastern Dharwar craton during the late Archean. Jour. Geol., v.107(1), pp.69–86.

    Article  Google Scholar 

  • Bhattacharya, S. (2014) Granitic magmatism and late-stage fluid activity visà-vis gold mineralization in schist belts in parts of the Eastern Dharwar Craton, India. Ph.D. Thesis, Indian Institute of Technology, Kharagpur, India, 203p.

    Google Scholar 

  • Bhattacharya, S. and Panigrahi, M.K. (2011) Heterogeneity in fluid characteristics in the Ramagiri-Penakacherla sector of the Eastern Dharwar Craton: implications to gold metallogeny. Russ. Geol. Geophy., v.52, pp.436–1447.

    Google Scholar 

  • Bhattacharya, S., Panigrahi, M. K. and Jayananda, M. (2014a) Mineral thermobarometry and fluid inclusion studies on the Closepet granite, Eastern Dharwar Craton, south India: Implications to emplacement and evolution of late-stage fluid. Jour. Asian Earth Sci., v.91, pp.1–18.

    Article  Google Scholar 

  • Bhattacharya, S., Panigrahi, M.K., Sachan, H.K. and Kharya, A. (2014b) Oxygen isotope ratio of quartz veins from the auriferous Ramagiri–Penakacherla schist belt and surrounding granitoids in the Eastern Dharwar craton:A case for a possible link between gold mineralization and granite magmatism. Ore Geol. Rev., v.63, pp.201–208.

    Article  Google Scholar 

  • Burrows, D.R. and Spooner, E.T.C. (1987) Generation of a magmatic H2OCO2 fluid enriched in Au, Mo, and W within an Archean sodic granodiorite stock, Mink Lake, northwestern Ontario. Econ. Geol., v.82(7), pp.1931–1957.

    Article  Google Scholar 

  • Candela, P. A. (1997) A review of shallow, ore-related granites: textures, volatiles, and ore metals. Jour. Petrol., v.38(12), pp.1619–1633.

    Article  Google Scholar 

  • Cline, J. S. and Bodnar, R. J. (1991) Can economic porphyry copper mineralization be generated by a“ typical” calc-alkaline melt’. Jour. Geophys. Res, v.96(B5), pp.8113–8126.

    Article  Google Scholar 

  • Deccan Gold Mines Limited (DGML), Annual Report, 2011. [http:// www.deccangoldmin es.com/index.php?option=com_content&view= article&id=60&Itemid=85]

  • Ebadi, A. and Johannes, W. (1991) Beginning of melting and composition of first melts in the system Qz-Ab-Or-H2O-CO2. Contrib. Mineral. Petrol., v.106, pp.286–295.

    Article  Google Scholar 

  • Elmer, F.L., White, R.W., and Powell, R. (2006) Devolatilization of metabasic rocks during greenschist–amphibolite facies metamorphism. Jour. Metam. Geol., v.24(6), pp.497–513.

    Article  Google Scholar 

  • Fogel, R. A. and Rutherford, M. J. (1990) The solubility of carbon dioxide in rhyolitic melts; a quantitative FTIR study. Amer. Miner., v.75(11-12), pp.1311–1326.

    Google Scholar 

  • Frezzotti, M.L., Di Vincenzo, G., Ghezzo, C. and Burke, E.A. (1994) Evidence of magmatic CO2-rich fluids in peraluminous graphite-bearing leucogranites from Deep Freeze Range (northern Victoria Land, Antarctica). Contrib. Mineral. Petrol., v.117(2), pp.111–123.

    Article  Google Scholar 

  • Frost, B.R. and Touret, J.L. (1989) Magmatic CO2 and saline melts from the Sybille monzosyenite, Laramie anorthosite complex, Wyoming. Contrib. Mineral. Petrol., v.103(2), pp.178–186.

    Article  Google Scholar 

  • Garofalo, P. S., Fricker, M. B., Günther, D., Bersani, D., and Lottici, P. P. (2014) Physical-chemical properties and metal budget of Au-transporting hydrothermal fluids in orogenic deposits. Geol. Soc., London, Spec. Publ., v.402, pp.71–102.

    Article  Google Scholar 

  • Giggenbach, W. F. (1996) Chemical composition of volcanic gases. In: Tilling R.I., Scarpa (Ed.), Monitoring and mitigation of volcanic hazards, Berlin Heidelberg, New York, pp.221–256.

  • Giggenbach, W.F. (1997) The origin and evolution of fluids in magmatic hydrothermal systems. In: Barnes H.L. (Ed.), Geochemistry of hydrothermal ore deposits, 3, Wiley, New York, pp.737–796.

  • Goldfarb, R.J. and Groves, D.I. (2015) Orogenic gold: common or evolving fluid and metal sources through time. Lithos, v.233, pp.2–26.

    Article  Google Scholar 

  • Goldfarb, R.J., Groves, D.I. and Gardoll, S. (2001) Orogenic gold and geologic time: a global synthesis. Ore Geol. Rev., v.18(1), pp.1–75.

    Article  Google Scholar 

  • Groves, D.I., Goldfarb, R.J., Robert, F. and Hart, C.J. (2003) Gold deposits in metamorphic belts: overview of current understanding, outstanding problems, future research, and exploration significance. Econ. Geol., v.98(1), pp.1–29.

    Google Scholar 

  • Jayananda, M., Martin, H., Peucat, J.J. and Mahabaleswar, B. (1995) Late Archaean crust-mantle interactions: geochemistry of LREE-enriched mantle derived magmas. Example of the Closepet batholith, southern India. Contrib. Mineral. Petrol., v.119(2-3), pp.314–329.

    Article  Google Scholar 

  • Jayananda, M., Moyen, J.F., Martin, H., Peucat, J.J., Auvray, B. and Mahabaleswar, B. (2000) Late Archaean (2550–2520 Ma) juvenile magmatism in the Eastern Dharwar craton, southern India: constraints from geochronology, Nd–Sr isotopes and whole rock geochemistry. Precambrian Res., v.99(3), pp.225–254.

    Article  Google Scholar 

  • Joyce, D.B. and Holloway, J.R. (1993) An experimental determination of the thermodynamic properties of H2O-CO2-NaCl fluids at high pressures and temperatures. Geochim. Cosmochim. Acta, v.57(4), pp.733–746.

    Article  Google Scholar 

  • Krienitz, M.S., Trumbull, R.B., Hellmann, A., Kolb, J., Meyer, F. M. and Wiedenbeck, M. (2008). Hydrothermal gold mineralization at the Hira Buddini gold mine, India: constraints on fluid evolution and fluid sources from boron isotopic compositions of tourmaline. Mineral. Depos., v.43(4), pp.421–434.

    Article  Google Scholar 

  • Laurent, O., Martin, H., Moyen, J.F. and Doucelance, R. (2014) The diversity and evolution of late-Archean granitoids: Evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga. Lithos, v.205, pp.208–235.

    Article  Google Scholar 

  • Lowenstern, J. B. (2001) Carbon dioxide in magmas and implications for hydrothermal systems. Mineral. Depos., v.36(6), pp.490–502.

    Article  Google Scholar 

  • Mishra, B. (2010) Metamorphism and Hydrothermal Fluid Evolution in Relation to Gold Metallogeny, Dharwar Craton, Southern India. In: Deb, R.D., Goldfarb, R.J. (Eds.) Gold Metallogeny India and Beyond, Narosa Publishing House, pp.154–167.

  • Mishra, B., Pal, N. and Sarbadhikari, A.B. (2005) Fluid inclusion characteristics of the Uti gold deposit, Hutti-Maski greenstone belt, southern India. Ore Geol. Rev., v.26(1), pp.1–16.

    Article  Google Scholar 

  • Mohanta, M.K. (1998) Geochemistry and Nuclear Energy potential of the Granitoid Gneisses Around Ramagiri Gold Fields. Doctoral dissertation thesis, Jawaharlal Nehru University.

    Google Scholar 

  • Nabelek, P. I. and Ternes, K. (1997) Fluid inclusions in the Harney Peak Granite, Black Hills, South Dakota, USA: Implications for solubility and evolution of magmatic volatiles and crystallization of leucogranite magmas. Geochim. Cosmochim. Acta, v.61(7), pp.1447–1465.

    Article  Google Scholar 

  • Panigrahi, M.K. (2006) visual C++–MFC based application software for ûuid inclusion data analysis and presentation. In: Abs. ACROFI-2 (Nanjing, China, 26-28 May, 2006), pp.165.

    Google Scholar 

  • Phillips, G.N. and Powell, R. (2009) Formation of gold deposits: review and evaluation of the continuum model. Earth Sci. Rev., v.94, pp.1–21.

    Article  Google Scholar 

  • Phillips, G.N. and Powell, R., (2010) Formation of gold deposits: a metamorphic devolatilization model. Jour. Metam. Geol., v.28, pp.689–718.

    Article  Google Scholar 

  • Powell, R., Will, T.M. and Phillips, G.N. (1991) Metamorphism in Archaean greenstone belts: calculated ûuid compositions and implications for gold mineralization. Jour. Metam. Geol., v.9, pp.141–150.

    Article  Google Scholar 

  • Qiu, Y. and McNaughton, N.J. (1999) Source of Pb in orogenic lode-gold mineralisation: Pb isotope constraints from deep crustal rocks from the southwestern Archaean Yilgarn Craton, Australia. Mineral. Depos., v.34, pp.366–381.

    Article  Google Scholar 

  • Rauchenstein-Martinek, K., Wagner, T., Waelle, M. and Heinrich, C.A. (2014) Gold concentrations in metamorphic fluids: A LA-ICPMS study of fluid inclusions from the Alpine orogenic belt. Chem. Geol., v.385, pp.70–83.

    Article  Google Scholar 

  • Ridley, J.R. and Diamond, L.W. (2000) Fluid chemistry of orogenic lode gold deposits and implications for genetic models. Rev. Econ. Geol., v.13, pp.141–162.

    Google Scholar 

  • Schmidt, C. and Bodnar, R. J. (2000) Synthetic fluid inclusions. XIV: PVTX properties in the system H2O-NaCl-CO2 at elevated temperatures, pressures, and salinites. Geochim. Cosmochim. Acta, v.64, pp.3853–3869.

    Google Scholar 

  • Shepherd, T.J., Rankin, A.H. and Alderton, D.H. (1985) A practical guide to fluid inclusion studies. Blackie, pp. 93–142.

    Google Scholar 

  • Shinohara, H. (1994) Exsolution of immiscible vapor and liquid phases from a crystallizing silicate melt: implications for chlorine and metal transport. Geochim. Cosmochim. Acta, v.58(23), pp.5215–5221.

    Article  Google Scholar 

  • Vasudev, V.N. (2009) Field guide to selected gold prospects in Karnataka and Andhra Pradesh. Geol. Surv. India Misc. Publ. 9.

  • Vaughn, E.S. and Ridley, J.R. (2014) Evidence for exsolution of Au-ore fluids from granites crystallized in the mid-crust, Archaean Louis Lake Batholith, Wyoming. Geol. Soc., London, Spec. Publ., v.402(1), pp.103–120.

    Article  Google Scholar 

  • Wang, L.G., McNaughton, N.J. and Groves, D.I. (1993) An overview of the relationship between granitoid intrusions and gold mineralisation in the Archaean Murchison Province, Western Australia. Mineral. Depos., v.28(6), pp.482–494.

    Article  Google Scholar 

  • Webster, J.D. (2004) The exsolution of magmatic hydrosaline chloride liquids. Chemical Geol., v.210(1), pp.33–48.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourabh Bhattacharya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, S., Panigrahi, M.K. Volatiles associated with granitoid intrusives around orogenic gold deposits in Ramagiri and Penakacherla regions of Eastern Dharwar Craton, South India. J Geol Soc India 90, 569–576 (2017). https://doi.org/10.1007/s12594-017-0753-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-017-0753-1

Navigation