Skip to main content
Log in

GUI based inversion code for automatic quantification of strike limited listric fault sources and regional gravity background from observed Bouguer gravity anomalies

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

A method coupled with a GUI based code in JAVA is developed in the space domain to simultaneously estimate the structures of strike limited listric fault sources and regional gravity background from a set of observed Bouguer gravity anomalies. The density contrast within the hanging wall of the structure is assumed to be varying continuously with depth based on a parabolic equation. The limiting surface of the fault plane is described with an exponential function. This method is automatic in the sense that it initializes both parameters of a strike limited listric fault source and regional gravity background from a set of observed Bouguer gravity anomalies and improves them iteratively until the modeled gravity anomalies fit the observed anomalies within the specified convergence criteria. The advantage of the code is that besides generating output in both ASCII and graphical forms it displays the animated versions of (i) the changes in model geometry, (ii) variation of each model parameter and misfit with iteration number, (iii) improvements in modeled gravity anomalies, and (iv) variation of density contrast with depth. The applicability of the code is demonstrated on both synthetic and real field gravity anomalies. In case of synthetic example pseudorandom noise is added to the residual gravity anomalies of the structure prior to inversion. The noisy anomalies are then inverted for the unknown parameters presuming (i) an ideal listric fault structure bounded by an exponential limiting surface with perfect flat top and bottom surfaces, (ii) non-ideal structure with uneven top and bottom surfaces with imperfect exponential limiting surface. Further, the robustness of the algorithm is exemplified by adding both regional gravity background and pseudorandom noise to the anomalies of the structure before inversion. In all cases, the interpreted parameters of the structure closely mimic the assumed parameters. The interpretation of gravity anomalies across the master fault of the Chintalpudi sub-basin in India has yielded information that is consistent with both DSS results and drilling information. The highlight of the code is that it can be used to interpret the gravity anomalies of listric fault sources even when the profile along which the interpretation is intended fails to bisect the strike length of the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal, B.P. (1995) Hydrocarbon prospects of the Pranhita-Godavari graben, India. In: Petrotech-95 proceedings of the first International petroleum conference exhibition, Hyderabad, India. pp.115–121.

    Google Scholar 

  • Bhaskara Rao, D. (1985) Analysis of gravity anomalies over an inclined fault with quadratic density function. Pure and Applied Geophysics, v.123(2), pp.250–260.

    Article  Google Scholar 

  • Bhaskara Rao, D., Prakash, M.J. and Ramesh Babu, N. (1993) Gravity interpretation using Fourier transforms and simple geometrical models with exponential density contrast. Geophysics, v.58, pp.1074–1083.

    Article  Google Scholar 

  • Brady, R., Wernicke, B. and Fryxell, J. (2000) Kinematic evolution of a large-offset continental normal fault system; South Virgin Mountains, Nevada. Geol. Soc. Amer. Bull., v. 112, pp.1375–1397.

    Google Scholar 

  • Chakravarthi, V. (1995) Gravity interpretation of nonoutcropping sedimentary basins in which the density contrast decreases parabolically with depth. Pure and Applied Geophysics, v.145, pp.327–335.

    Article  Google Scholar 

  • Chakravarthi, V. (2003) Digitally implemented method for automatic optimization of gravity fields obtained from three-dimensional density interfaces using depth dependent density. US Patent 6,615,139.

    Google Scholar 

  • Chakravarthi. V. (2008) Gravity inversion of 2.5D faulted beds using depth dependent density. Curr. Sci., v.95, pp.1618–1622.

    Google Scholar 

  • Chakravarthi, V. (2010) LSTRKFALTG — A forward modeling program to compute theoretical gravity anomalies of strike limited listric fault structures with prescribed vertical variation in density. Computers & Geosciences, v.36(5), pp.675–679.

    Article  Google Scholar 

  • Chakravarthi, V. (2011) Automatic gravity optimization of 2.5D strike listric fault sources with analytically defined fault planes and depth-dependent density. Geophysics, v.76(2), pp. I21–I31.

    Article  Google Scholar 

  • Chakravarthi, V., Singh, S.B. and Ashok Babu, G. (2001) INVER2DBASE — A program to compute basement depths of density interfaces above which the density contrast varies with depth. Computers & Geosciences, v.27, pp.1127–1133.

    Article  Google Scholar 

  • Chakravarthi, V. and Sundararajan, N. (2004) Ridge regression algorithm for gravity inversion of fault structures with variable density. Geophysics, v.69, pp.1394–1404.

    Article  Google Scholar 

  • Chakravarthi, v. and Sundararajan, N. (2006) Gravity anomalies of 2.5-D multiple prismatic structures with variable density: a Marquardt inversion. Pure and Applied Geophysics, v.163, pp.229–242.

    Article  Google Scholar 

  • Chakravarthi, V. and Sundararajan, N. (2007) 3D gravity inversion of basement relief — A depth dependent density approach. Geophysics, v.72, pp.123–132.

    Article  Google Scholar 

  • Chappell, A. and Kusznir, N. (2008) An algorithm to calculate the gravity anomaly of sedimentary basins with exponential density-depth relationships. Geophysical Prospecting, v.56(2), pp.249–258.

    Article  Google Scholar 

  • Chen, W., Zhang, S. and Shi, Y. (1992) An effective method of fault gravity inversion. Jour. Nanjing Univ., v.4(1), pp.68–74.

    Google Scholar 

  • Cordell, L. (1973) Gravity anomalies using an exponential density-depth function -San Jacinto Graben, California. Geophysics, v.38, pp.684–690.

    Article  Google Scholar 

  • García-Abdeslem, J. (2000) 2-D inversion of gravity data using sources laterally bounded by continuous surfaces and depthdependent density. Geophysics, v.65(4), pp.1128–1141.

    Article  Google Scholar 

  • Gimenez, M. E., Martinez, M. P., Jordan, T., Ruíz, F. and Lince Klinger, F. (2009) Gravity characterization of the La Rioja Valley basin, Argentina. Geophysics, v.74(3), pp.B83–B94.

    Article  Google Scholar 

  • Jackson, J. A. (1987) Active normal faulting and crustal extension. Geol. Soc. London Spec. Publ., v.28, pp.3–17.

    Article  Google Scholar 

  • Jackson, J.A. and Mckenzie, D. (1983) The geometrical evolution of normal fault systems. Jour. Struc. Geol., v.5, pp.471–482.

    Article  Google Scholar 

  • Janecke, S.U., Vandenburg, C.J. and Blankenau, J.J. (1998) Geometry, mechanisms and significance of extensional folds from examples in the Rocky Mountain Basin and Range province, U.S.A. Jour. Struc. Geol., v.20, pp.841–856.

    Article  Google Scholar 

  • Kaila, K.L., Murthy, P.R.K., Rao, V.K. and Venkateswarlu, N. (1990) Deep seismic sounding in the Godavari Graben and Godavari (Coastal) Basin, India. Tectonophysics, v.173, pp.307–317.

    Article  Google Scholar 

  • Li, X. (2001) Vertical resolution: Gravity versus vertical gravity gradient. The Leading Edge, v.20, pp.901–904.

    Article  Google Scholar 

  • Martín-Atienza, B. and García-Abdeslem, J. (1999) 2-D gravity modeling with analytically defined geometry and quadratic polynomial density functions. Geophysics, v.64, pp.1730–1734.

    Article  Google Scholar 

  • Marquardt, D. W. (1963) An algorithm for least squares estimation of nonlinear parameters: Journal Society Indian Applied Mathematics, v.11, pp.431–441.

    Article  Google Scholar 

  • Mckenzie, D. (1978) Some remarks on the development of sedimentary basins. Earth Planet. Sci. Lett., v.40, pp.25–32.

    Article  Google Scholar 

  • Mishra, D.C., Gupta, S.B., Rao, M.B.S.V., Venkatarayudu, M. and Laxman, G. (1987) Godavari basin — a geophysical study. Jour. Geol. Soc. India, v.30, pp.469–476.

    Google Scholar 

  • Murthy, I.V.R. (1998) Gravity and magnetic interpretation in Exploration Geophysics: Geological Society of India, Bangalore, 363p.

    Google Scholar 

  • Murthy, I.V.R. and Krishnamacharyulu, S.K.G. (1990) Automatic inversion of gravity anomalies of faults: Computers & Geosciences, v.16, pp.539–548.

    Article  Google Scholar 

  • Pawlowski, R. (2008) The use of gravity anomaly data for offshore continental margin demarcation. The Leading Edge, v.27, pp.722–727.

    Article  Google Scholar 

  • Peirce, J.W. and Lipkov, L. (1988) Structural interpretation of the Rukwa rift, Tanzania. Geophysics, v.53, pp.824–836.

    Article  Google Scholar 

  • Rao, C. S. R. (1982) Coal resources of Tamil Nadu, Andhra Pradesh, Orissa and Maharashtra. Bull. Geol. Surv. India, v.2, pp.1–103.

    Google Scholar 

  • Stavrev, P. and Reid, A. (2010) Euler deconvolution of gravity anomalies from thick contact/fault structures with extended negative structural index. Geophysics, v.75, pp.I51–I58.

    Article  Google Scholar 

  • Sundararajan, N. and Ramabrahmam, G. (1998) Spectral analysis of gravity anomalies caused by slab-like structures: A Hartley transform technique. Journal of Applied Geophysics, v.39(1), pp.53–61.

    Article  Google Scholar 

  • Thanassoulas, C., Tselentis, G.A. and Dimitriadis, K. (1987) Gravity inversion of a fault by Marquardt’s method. Computers & Geosciences, v.1(4), pp.399–404.

    Article  Google Scholar 

  • Torizin, J., Jentzsch, G., Malischewsky, P., Kley, J., Abakanov, N. and Kurskeev, A. (2009) Rating of seismicity and reconstruction of the fault geometries in northern Tien Shan within the project “Seismic Hazard Assessment for Almaty”. Jour. Geodynamics, v.48(3–5), pp.269–278.

    Article  Google Scholar 

  • Wernicke, B. and Burchfiel, B.C. (1982) Modes of extensional tectonics. Journal of Structural Geology, v. 4, pp. 105–115.

    Article  Google Scholar 

  • Zhang, J., Zhong, B., Zhou, X. and Dai, Y. (2001) Gravity anomalies of 2-D bodies with variable density contrast. Geophysics, v.66, pp.809–813.

    Article  Google Scholar 

  • Zhou, X. (2008) 2D vector gravity potential and line integrals for the gravity anomaly caused by a 2D mass of depth-dependent density contrast. Geophysics, v.73(6), pp.143–150

    Article  Google Scholar 

  • Zhou, X. (2009) General line integrals for gravity anomalies of irregular 2D masses with horizontally and vertically dependent density contrast. Geophysics, v. 74(2), pp. 11–17.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Chakravarthi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakravarthi, V., Rajeswara Sastry, S. GUI based inversion code for automatic quantification of strike limited listric fault sources and regional gravity background from observed Bouguer gravity anomalies. J Geol Soc India 83, 625–634 (2014). https://doi.org/10.1007/s12594-014-0091-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-014-0091-5

Keywords

Navigation