Skip to main content

Advertisement

Log in

Stochastic Inversion of Gravity Data Accounting for Structural Uncertainty

  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

Conventional gravity inversion techniques have limited ability to quantify structural uncertainty in geologic models. In this paper, a stochastic framework is proposed that directly incorporates fault-related and density-related uncertainty into the inversion process. The approach uses Monte Carlo simulation to generate model realizations and the gradual deformation method to further refine models to match observed data. To guarantee that model realizations are structurally restorable, fault displacements are generated using a kinematic modeling approach in which fault model properties such as the number of faults, location, dip, slip, and orientation are considered uncertain. Using a synthetic case study problem, a reference gravity field was inverted to generate a suite of posterior model realizations. Analysis of the posterior models was used to create a fault probability map as well as quantify the distribution of slip and dip of faults in three zones of deformation. Uncertainty in density values was found to be greatly reduced in the top 250 m depth, suggesting limited sensitivity to deeper sources in this example. Following the synthetic case study problem, the inversion approach was applied to a field-observed gravity profile in Dixie Valley, Nevada, and the inversion results were compared to a previously published forward gravity model. By generating a suite of posterior models, structural uncertainty can be better assessed to make more informed decisions in a host of subsurface modeling problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abe S, van Gent H, Urai JL (2011) DEM simulation of normal faults in cohesive materials. Tectonophysics 512(1–4):12–21

    Article  Google Scholar 

  • Arrowsmith JR, Zielke O (2009) Tectonic geomorphology of the San Andreas Fault zone from high resolution topography: an example from the Cholame segment. Geomorphology 113(1–2):70–81

    Article  Google Scholar 

  • Athens ND, Glen JMG, Klemperer SL, Egger AE, Fontiveros VC (2016) Hidden intrabasin extension: evidence for dike-fault interaction from magnetic, gravity, and seismic reflection data in Surprise Valley, northeastern California. Geosphere 12(1):15–25

    Article  Google Scholar 

  • Aydin O, Caers JK (2017) Quantifying structural uncertainty on fault networks using a marked point process within a Bayesian framework. Tectonophysics 712–713:101–124

    Article  Google Scholar 

  • Barnett JAM, Mortimer J, Rippon JH, Walsh JJ, Watterson J (1987) Displacement geometry in the volume containing a single normal fault. AAPG Bull 71(8):925–937

    Google Scholar 

  • Beucher H, Renard D (2016) Truncated Gaussian and derived methods. CR Geosci 348(7):510–519

    Article  Google Scholar 

  • Blakely RJ (1996) Potential theory in gravity and magnetic applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Breiman L (1999) Random forests. Technical Report TR567. UC Berkeley

  • Butler DK (1995) Generalized gravity gradient analysis for 2-D inversion. Geophysics 60(4):1018–1028

    Article  Google Scholar 

  • Caumon G, Tertois AL, Zhang L (2007) Elements for stochastic structural perturbation of stratigraphic models. European Association of Geoscientists & Engineers

  • Cherpeau N, Caumon G, Lévy B (2010) Stochastic simulations of fault networks in 3D structural modeling. CR Geosci 342(9):687–694

    Article  Google Scholar 

  • Cockett R, Kang S, Heagy LJ, Pidlisecky A, Oldenburg DW (2015) SimPEG: an open source framework for simulation and gradient based parameter estimation in geophysical applications. Comput Geosci 85:142–154

    Article  Google Scholar 

  • Crombez V, Hauser J, Peeters L, Chopping R (2020) Understanding the gravity response variability of sedimentary basins using forward stratigraphic modelling. Mar Pet Geol 122:104698

    Article  Google Scholar 

  • Crook A, Willson S, Yu J, Owen D (2006) Predictive modelling of structure evolution in sandbox experiments. J Struct Geol 28(5):729–744

    Article  Google Scholar 

  • Exadaktylos GE, Vardoulakis I, Stavropoulou MC, Tsombos P (2003) Analogue and numerical modeling of normal fault patterns produced due to slip along a detachment zone. Tectonophysics 376(1):117–134

    Article  Google Scholar 

  • Finch E, Gawthorpe R (2017) Growth and interaction of normal faults and fault network evolution in rifts: insights from three-dimensional discrete element modelling. Geol Soc London Special Publ 439(1):219–248

    Article  Google Scholar 

  • Fullagar P K, Pears G A (2007) Towards geologically realistic inversion. In: Proceedings of exploration ’07, fifth decennial international conference on mineral exploration, Toronto vol. 7, pp 445–460

  • Gibson JR, Walsh JJ, Watterson J (1989) Modelling of bed contours and cross-sections adjacent to planar normal faults. J Struct Geol 11(3):317–328

    Article  Google Scholar 

  • Giraud J, Lindsay M, Ogarko V, Jessell M, Martin R, Pakyuz-Charrier E (2019) Integration of geoscientific uncertainty into geophysical inversion by means of local gradient regularization. Solid Earth 10(1):193–210

    Article  Google Scholar 

  • Godefroy G, Caumon G, Ford M, Laurent G, Jackson CAL (2018) A parametric fault displacement model to introduce kinematic control into modeling faults from sparse data. Interpretation 6(2):B1–B13

    Article  Google Scholar 

  • Godefroy G, Caumon G, Laurent G, Bonneau F (2019) Structural interpretation of sparse fault data using graph theory and geological rules. Math Geosci 51(8):1091–1107

    Article  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, Oxford

    Google Scholar 

  • Hardy S (2019) Discrete element modelling of extensional, growth, fault-propagation folds. Basin Res 31(3):584–599

    Article  Google Scholar 

  • Haugerud RA, Harding DJ, Johnson SY, Harless JL, Weaver CS, Sherrod BL (2003) High-resolution lidar topography of the Puget Lowland. Washington. GSA Today 13(6):4–10

    Article  Google Scholar 

  • Hoffman T, Caers J (2005) Regional probability perturbations for history matching. J Petrol Sci Eng 46(1):53–71

    Article  Google Scholar 

  • Hollund K, Mostad P, Fredrik Nielsen B, Holden L, Gjerde J, Grazia Contursi M, McCann AJ, Townsend C, Sverdrup E (2002) Havana a fault modeling tool. In: Koestler AG, Hunsdale R (eds) Norwegian petroleum society special publications, vol 11. Hydrocarbon Seal Quantification. Elsevier, Amsterdam, pp 157–171

    Google Scholar 

  • Hu LY, Blanc G, Noetinger B (2001) Gradual deformation and iterative calibration of sequential stochastic simulations. Math Geol 33(4):475–489

    Article  Google Scholar 

  • Le Ravalec M, Mouche E (2012) Calibrating transmissivities from piezometric heads with the gradual deformation method: an application to the culebra dolomite unit at the waste isolation pilot plant (WIPP), New Mexico, USA. J Hydrol 472—-473:1–13

    Article  Google Scholar 

  • Maithya J, Fujimitsu Y, Nishijima J (2020) Analysis of gravity data to delineate structural features controlling the Eburru geothermal system in Kenya. Geothermics 85:101795

    Article  Google Scholar 

  • Manzocchi T, Carter JN, Skorstad A, Fjellvoll B, Stephen KD, Howell JA, Matthews JD, Walsh JJ, Nepveu M, Bos C, Cole J, Egberts P, Flint S, Hern C, Holden L, Hovland H, Jackson H, Kolbjørnsen O, MacDonald A, Nell PAR, Onyeagoro K, Strand J, Syversveen AR, Tchistiakov A, Yang C, Yielding G, Zimmerman RW (2008) Sensitivity of the impact of geological uncertainty on production from faulted and unfaulted shallow-marine oil reservoirs: objectives and methods. Pet Geosci 14(1):3–15

    Article  Google Scholar 

  • Martelet G, Perrin J, Truffert C, Deparis J (2013) Fast mapping of magnetic basement depth, structure and nature using aeromagnetic and gravity data: combined methods and their application in the Paris Basin. Geophys Prospect 61(4):857–873

    Article  Google Scholar 

  • Mosegaard K, Tarantola A (1995) Monte Carlo sampling of solutions to inverse problems. J Geophys Res Solid Earth 100(B7):12431–12447

    Article  Google Scholar 

  • Nabighian MN, Ander ME, Grauch VJS, Hansen RO, LaFehr TR, Li Y, Pearson WC, Peirce JW, Phillips JD, Ruder ME (2005) Historical development of the gravity method in exploration historical development of gravity method. Geophysics 70(6):63ND-89ND

    Article  Google Scholar 

  • Nishijima J, Naritomi K (2017) Interpretation of gravity data to delineate underground structure in the Beppu geothermal field, central Kyushu, Japan. J Hydrol Regional Stud 11:84–95

    Article  Google Scholar 

  • Nollet S, Kleine Vennekate GJ, Giese S, Vrolijk P, Urai JL, Ziegler M (2012) Localization patterns in sandbox-scale numerical experiments above a normal fault in basement. J Struct Geol 39:199–209

    Article  Google Scholar 

  • Okaya DA, Thompson GA (1985) Geometry of Cenozoic extensional faulting: Dixie Valley. Nevada. Tectonics 4(1):107–125

    Article  Google Scholar 

  • Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  • Phelps G (2016) Forward modeling of gravity data using geostatistically generated subsurface density variations. Geophysics 81(5):G81–G94

    Article  Google Scholar 

  • Phillips JD, Hansen RO, Blakely RJ (2007) The use of curvature in potential-field interpretation. Explor Geophys 38(2):111–119

    Article  Google Scholar 

  • Remy N, Boucher A, Wu J (2009) Applied geostatistics with SGeMS: a user’s guide. Cambridge University Press

  • Saltus RW, Blakely RJ (2011) Unique geologic insights from “non-unique” gravity and magnetic interpretation. GSA Today 21(12):4–10.https://doi.org/10.1130/G136A.1

  • Sambridge M, Gallagher K, Jackson A, Rickwood P (2006) Trans-dimensional inverse problems, model comparison and the evidence. Geophys J Int 167(2):528–542

    Article  Google Scholar 

  • Scheidt C, Li L, Caers J (2018) Quantifying uncertainty in subsurface systems. Wiley, New York

    Book  Google Scholar 

  • Sleep NH, Fujita K (1997) Principles of geophysics, vol 550 S453. Blackwell Science, Massachusetts

  • Souche L, Iskenova G, Lepage F, Desmarest D (2014) Construction of structurally and stratigraphically consistent structural models using the volume-based modelling technology: applications to an australian dataset. In: International petroleum technology conference

  • Strebelle S (2002) Conditional simulation of complex geological structures using multiple-point statistics. Math Geol 34(1):1–21

    Article  Google Scholar 

  • Suzuki S, Caers J (2008) A distance-based prior model parameterization for constraining solutions of spatial inverse problems. Math Geosci 40(4):445–469

    Article  Google Scholar 

  • Thakur M, Blackwell DD, Erkan K (2012) The regional thermal regime in Dixie Valley, Nevada, USA. Geothermal Resources Council Trans 36:59–67

    Google Scholar 

  • Wellmann JF, Thiele ST, Lindsay MD, Jessell MW (2016) pynoddy 1.0: an experimental platform for automated 3-D kinematic and potential field modelling. Geosci Model Develop 9(3):1019–1035

    Article  Google Scholar 

  • Woodward NB, Boyer SE, Suppe J (1989) Balanced geological cross-sections. Am Geophys Union Short Courses Geol 6:132

    Google Scholar 

  • Wooldridge A (2010) Review of modern airborne gravity focusing on results from GT-1a surveys. First Break 28(5):85–92. https://doi.org/10.3997/1365-2397.28.5.38988

Download references

Acknowledgements

The authors wish to thank Allegra Hosford Scheirer and three anonymous reviewers whose feedback greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noah Athens.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athens, N., Caers, J. Stochastic Inversion of Gravity Data Accounting for Structural Uncertainty. Math Geosci 54, 413–436 (2022). https://doi.org/10.1007/s11004-021-09978-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-021-09978-2

Keywords

Navigation