Skip to main content
Log in

Mesoproterozoic differential metasomatism in subcontinental lithospheric mantle of Central Indian Tectonic zone: Evidence from major and trace element geochemistry of padhar mafic-ultramafic complex

  • Published:
Journal of the Geological Society of India

Abstract

Metasomatism above subduction zone is an important process capable of producing a heterogeneous mantle wedge with locally varying characters. This, in turn, leads to variation in character of the mafic and intermediate rocks produced through partial melting of lithospheric mantle. The Padhar mafic-ultramafic complex is situated in western part of the Betul belt, Central India, shows enrichment in Rb, Ba, Th and Pb and depletion in Nb, Hf and Zr. Major and trace element data along with REE, confirms the presence of a metasomatized mantle above a Mesoproterozoic subduction zone. Differential petrological evolution, corresponding to the different magma batches, as reflected in almost all of the binary element / oxide variation diagrams, testifies small scale metasomatic heterogeneity in the underlying suprasubduction zone mantle wedge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldannaz, E., Pearce, J. A., Thirlwall, M.F. and Mitchell, J.G. (2000) Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Volcan. Geotherm. Res., v.102, pp.67–95.

    Article  Google Scholar 

  • Anderson, J.L. and Smith, D.R. (1995) The effects of temperature and fO2 on the Al-in-hornblende barometer. Amer. Mineral., v.80, pp.519–559.

    Google Scholar 

  • Bailey, J.C. (1981) Geochemical criteria for a refined tectonic discrimination of orogenic andesites. Chem. Geol., v.32, pp.139–154.

    Article  Google Scholar 

  • Bhowmik, S.K. and Roy, A. (2003) Garnetiferous metabasites from the Sausar Mobile Belt: Petrology, P-T path and implications for the tectonothermal evolution of the Central Indian Tectonic zone. Jour. Petrol., v.44(3), pp.387–420.

    Article  Google Scholar 

  • Brey, G.P. and Kohler, T. (1990) Geothermobarometry in four — phase lherzolite II, new thermobarometers and practical assessment of existing thermobarometers. Jourr. Petrol., v.31, pp.1353–1378.

    Article  Google Scholar 

  • Chaturvedi, R.K. (2001) A review of the Geology, Tectonic features and tectono-lithostratigraphy of Betul Belt. Geol. Surv. India Spec. Publ., no.64, pp.299–315.

  • Class, C., Miller, D. M., Goldstein, S.L. and Langmuir, C.H. (2000) Distinguishing melt and fluid subduction components in Unmak Volcanics, Aleutian Arc. Geochemistry Geophysics Geosystems, v.1(6), pp.1004–1034.

    Article  Google Scholar 

  • Elliott, T., Plank, T., Zindler, A., White, W. and Bourdon, B. (1997) Element transport from subducted slab to volcanic front at the Mariana arc. Jour. Geophys. Res., v.102, pp.14991–15019.

    Article  Google Scholar 

  • Feig, S.T., Koepke, J. and Snow, J.E. (2006) Effect of water on tholeiitic basalt phase equilibria: an experimental study under oxidizing conditions. Contrib. Mineral. Petrol., v.152, pp.611–638.

    Article  Google Scholar 

  • Ghosh, B., Praveen, M.N. and Srivastava, H.S. (2006) Gahnite chemistry from metamorphosed Zn-Pb-Cu sulphide occurrences of Betul Belt, Central India. Jour. Geol. Soc. India, v. 67, pp.17–20.

    Google Scholar 

  • Ghosh, K.K., Raj, J. and Nandy, K. (1998) On the intrusive suite from Bilaspur, Madhya Pradesh. Jour. Geol. Soc. India, v.51, pp.97–102.

    Google Scholar 

  • Hammada, M. and Fuji, T. (2008) Experimental constraints on the effects of pressure and H2O on the fractional crystallization of high-Mg island arc basalt. Contrib. Mineral. Petrol., v.155, pp.611–638.

    Article  Google Scholar 

  • Hawkesworth, C.J., Gallagher, K., Herot, J.M. and Mcdermott, F. (1993) Mantle and slab contribution in arc magma. Ann. Rev. Earth Planet. Sci., v.21, pp.175–204.

    Article  Google Scholar 

  • Hawkesworth, C.J., Turner, S.P., Mcdermott, F., Peate, D.W. and van Calsteren, P. (1997) U-Th isotopes in arc magmas: implications for element transfer from the subducted crust. Science, v.276, pp.551–555.

    Article  Google Scholar 

  • Irvine, T.N. and Baragar, W.R.A. (1971) A guide to geochemical classification of the common volcanic rocks. Canad. Jourr. Earth Sci., v.8, pp.523–548.

    Article  Google Scholar 

  • Jensen, L.S. (1976) A new cation plot for classifying sub-alkaline volcanic rocks; Misc. Pap. Ontario, Div. Mines No. 66.

  • Johnson, M.C. and Rutherford, M.J. (1989) Experimental calibration of the Al-inhornblende geobarometer with application to Long Valley caldera (California). Geology, v.17, pp.837–844.

    Article  Google Scholar 

  • Johnson, K.T.M. (1994) Experimental cpx/ and garnet/melt partitioning of REE and other trace elements at high pressures; petrogenetic implications. Mineral. Mag., v.58, pp.454–455.

    Article  Google Scholar 

  • Kosigo, T., Tasumi, Y. and Nakono, S. (1997) Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts. Earth Planet. Sci. Lett., v.148, pp.193–205.

    Article  Google Scholar 

  • Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W. and Youzhi, G. (1997) Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association,Commission on New Minerals and Mineral Names. Amer. Mineral., v.82, pp. 1019–1037.

    Google Scholar 

  • Mahakud, S.P. and Raut, P.K. (2001) Sulphide Mineralization in the central part of Betul Belt around Ghisi-Mauriya-Koparpani area, Betul District, Madhya Pradesh. Geol. Surv. India Spec. Publ., no.64, pp.377–385.

  • Mckenzie, D. and O’nions, R.K. (1991). Partial melt distribution from inversion of rare earth element concentrations. Jourr. Petrol., v.32, pp.1021–1091.

    Article  Google Scholar 

  • Miyashiro, A. (1974) Volcanic rock series in island arcs and active continental margins. Amer. Jour. Sci., v.274, pp.317–327.

    Article  Google Scholar 

  • Munker, C. (2000) The isotope and trace element budget of the Cambrian Devil river arc system, New Zealand: source constraints and applications of refined ICPMS techniques. Chem. Geol., v.144, pp.23–45.

    Article  Google Scholar 

  • Peacock, S. M., Rushmer, T. and Thompson, A. B. (1994) Partial melting of subducting oceanic crust. Earth Planet. Sci. Lett., v.121, pp.227–244.

    Article  Google Scholar 

  • Peccerillo, R. and Taylor, S.R. (1976) Geochemistry of Eocene calc-alkalic volcanic rocks from the Kastamanu area, northern Turkey. Contrib. Mineral. Petrol., v.58, pp.63–81

    Article  Google Scholar 

  • Ramachandra, H.M. and Pal, R.N. (1992) Progress report on study of geology and geochemistry and Cu-Pb-Zn mineralization in Kherli Area, Betul District, M.P. Unpubl. Prog. Report. Geol. Surv. India, p.60.

  • Rickwood, P. C. (1989) Boundary lines between petrologic diagrams which use oxides of major and minor elements. Lithos, v.22, pp.247–344.

    Article  Google Scholar 

  • Rollinson, H.R. and Tarney, J. (2005) Adakites-the key to understanding LILE depletion in granulites. Lithos, v.79, pp.61–81.

    Article  Google Scholar 

  • Roy, A. and Prasad, H.M. (2001) Precambrians of Central India: A possible Tectonic model. Geol. Surv. India. Spec. Publ., v.64, pp.177–197.

    Google Scholar 

  • Roy, A. and Prasad, H. M. (2003) Tectonothermal events in Central Indian Tectonic Zone (CITZ) and its implication in Rhodinian crustal assembly. Jour. Asian Earth Sci., v.22, pp.115–129.

    Article  Google Scholar 

  • Roy, A., Chore, S.A., Viswakarma, L.L. and Chakraborty, K. (2004) Geology and petrochemistry of Padhar mafic-ultramafic complex from Betul Belt: A study on arc type magmatism in Central Indian Tectonic Zone. Geol. Surv. India. Spec. Publ., v.84, pp. 297–318.

    Google Scholar 

  • Roy, A. and Chakraborty, K. (2008) Precambrian Mafic-Ultramafic magmatism in Central Indian Suture Zone. Jour. Geol. Soc. India, v.72, pp.123–140.

    Google Scholar 

  • Roy, A., Kagami, H., Yoshida, M., Roy, A., Bandyopadhyaya, B. K., Chattopadhyay, A., Khan, A.S., Huin, A. K. and Pal, T. (2006). Rb-Sr and Sm-Nd dating of different metamorphic events from the Sausar Mobile Belt, Central India: Implications for Proterozoic crustal evolution. Journal of Asian Earth Sciences,v. 26, pp.61–76.

    Article  Google Scholar 

  • Schmidt, M.W. (1992) Amphibole composition in tonalite as a function of pressure: an experimental study at 650°C. Contrib. Mineral. Petrol., v.110, pp.304–310.

    Article  Google Scholar 

  • Sheraton, J. W, Black, L.P., Mcculloch, M. T. and Oliver, R.L. (1990). Age and origin of compositionally varied mafic dyke swarm in the Bunger Hills East Antarctica Chem. Geol., v. 85, pp. 215 246.

    Google Scholar 

  • Stern, C.R. and Kilian, R. (1996) Role of the subducted slab, mantle wedge and continental crust in the generation adakites from the Andean Austral Volcanic Zone. Contrib. Mineral. Petrol., v.123, pp.263–281.

    Article  Google Scholar 

  • Sun, S.-S. and Mcdonough, W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: A.D. Saunders and M.J. Norry (Eds.), Magmatism in the Ocean Basins. Geol. Soc. London Spec. Publi., pp.313–345.

  • Thomas, W.M. and Ernst, W.G. (1990) The aluminium content of hornblende in calcalkaline granitic rocks: A mineralogic barometer calibrated experimentally to 12 kbars. In: R.J. Spencer and I-M. Chou (Eds.), Fluid-mineral interactions: A tribute to H. P. Eugster. Geochem. Soc. Spec. Publ., v.2, pp.59–63.

  • Wedepohl, K.H. (1995) The composition of the continental crust. Geochim. Cosmochim. Acta, v.59, pp.1217–1232.

    Article  Google Scholar 

  • Winchester, J.A. and Floyd, P.A. (1976) Geochemical magma type discrimination; application to altered and metamorphosed basic igneous rocks. Earth Plamet. Sci. Lett., v.28, pp.459–469.

    Article  Google Scholar 

  • Winter, J.D. (2001). An introduction to Igneous and Metamorphic Petrology. Prentice Hall, New Jersey, p.320.

    Google Scholar 

  • Wood, D.A., Tarney, J., Varet, J., Saunders, A.D., Bougault, H., Joron, J.L., Treuil, M. and Cann, J.R. (1979) Geochemistry of basalts drilled from north Atlantic by IPOD leg 49 implications for mantle heterogeneity. Earth Planet. Sci. Lett., v.42, pp.77–97.

    Article  Google Scholar 

  • Zhao, J. X.-, Shiraishi, K., Ellis, D.J. and Sheraton, J.W. (1995) Geochemical and isotopic studies of syenites from Yamato Mountains, East Antarctica: Implications for the origin of syenitic magmas. Geochim. Cosmochim. Acta, v.59, pp.1363–1382

    Article  Google Scholar 

  • Zhou, J.-H. and Zhou, M.-F. (2007) Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction related metasomatism in the upper mantle. Precambrian Res., v.152, no.1–2, pp.27–47.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasturi Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborty, K., Roy, A. Mesoproterozoic differential metasomatism in subcontinental lithospheric mantle of Central Indian Tectonic zone: Evidence from major and trace element geochemistry of padhar mafic-ultramafic complex. J Geol Soc India 80, 628–640 (2012). https://doi.org/10.1007/s12594-012-0189-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-012-0189-6

Keywords

Navigation