Skip to main content
Log in

Intermediate sulfidation epithermal Pb-Zn-Cu (±Ag-Au) mineralization at Cheshmeh Hafez deposit, Semnan province, Iran

  • Published:
Journal of the Geological Society of India

Abstract

The Cheshmeh Hafez epithermal base metal deposit is located in Troud-Chah Shirin mountain range in the Alborz magmatic belt of northern Iran. In this area, the Eocene volcanism and associated mineralization are controlled by NW-SE trending Anjilo and Troud major faults. Geological units are composed of porphyritic andesite, andesitic basalt, dacite, rhyodacite, trachyandesite and basalt, which are typically high-K igneous rocks transitional to shoshonites. Alteration in Cheshmeh Hafez area comprise of propylilitization, sericitization, argillization and silicification. Mineralization consists of three stages. Stage 1, quartz, carbonate with early pyrite I and chalcopyrite assemblages. Stage 2, the main stage of sulfide deposition, comprises early euhedral galena I followed by galena II and sphalerite, then galena III, chalcopyrite, tetrahedrite, pyrite II, bornite and digenite. Stage 3 involves the deposition of quartz and calcite barren veins with minor pyrite. The average assays from 12 channel samples of Cheshmeh Hafez veins are 0.15 g/t Au, 3.23 g/t Ag, 4.47 wt % Pb, 2.64 wt % Cu, and 1.73 wt % Zn. Fluid inclusion homogenization temperatures (Th) in quartz fall within the range of 140°-280°C with salinities ranging from 4.7 to 18 wt. % NaCl equivalent. Comparison of Th versus ice melting (Tmice) values indicates fluid dilution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aghanabati, A. (2003) Geology of Iran. Geol. Surv. Iran, pp.123–147.

  • Akande, S.O., Horn, E.E. and Reutel, C. (1988) Mineralogy, fluid inclusion and genesis of the Arufu and Akwana Pb-Zn-F mineralization, middle Benue Trough, Nigeria. Jour. African Earth Sci., v.7, pp.167–180.

    Article  Google Scholar 

  • Alavi, M. (1991) Tectonic Map of Middle East. Geol. Surv. Iran.

  • Albinson, T., Norman, D.I. Cole, D. and Chomiak, B. (2001) Controls on formation of low-sulfidation epithermal deposits in Mexico: Constrains from fluid inclusion and stable isotope data. Soc. Econ. Geol., Spec. Publ. no.8, pp.1–32.

  • Arribas, A., Cunningham, C.G., Rytuba, J.J., Rye, R.O., Kelly, W.C., Podwysocki, M.H., Mckee, E.H. and Tosdal, R.M., (1995) Geology, geochronology, fluid inclusion and isotope geochemistry of the Rodalquilar Au alunite deposits, Spain. Econ. Geol., v.90, pp.795–822.

    Article  Google Scholar 

  • Azizi, H. and Jahangiri, A. (2008) Cretaceous subduction-related volcanism in the Northern Sanandaj Sirjan zone, Iran. Jour. Geodyn, v.45, pp.178–190.

    Article  Google Scholar 

  • Barnes, H.L. (Ed.), (1979) Solubility’s of ore minerals. Geochemistry of hydrothermal ore deposits. Wiley, NY, pp.404–460.

    Google Scholar 

  • Benning, L.G. and Seward, T.M. (1996) Hydrosulfide complexing of Au in hydrothermal solutions from 150 to 400 °C and 500 to 1500 bars, Geochim. Cosmochim. Acta, v.60, pp.1849–1871.

    Article  Google Scholar 

  • Bodnar, R.J. (1993) Revised equation and table for determining the freezing point depression of H2O-NaCl solutions, Geochim. Cosmochim. Acta, v.57, pp.683–684.

    Article  Google Scholar 

  • Collins, P.L.F. (1979) Gas hydrate in CO2-bearing fluid inclusions and the use of freezing data for estimation of salinity. Econ. Geol., v.74, pp.1435–1444.

    Article  Google Scholar 

  • Cooke, D.R. and Simmons, S.F. (2000) Characteristics and genesis of epithermal gold deposits. Rev. Econ. Geol., v.13, pp.221–244.

    Google Scholar 

  • Downes, P.M. (2006) Yerranderie a Late Devonian Silver-Gold-Lead intermediate sulfidation epithermal district, Eastern Lachlan Orogen, New South Wales, Australia: Resource Geology, v.57, pp.1–23.

    Google Scholar 

  • Einaudi, M.T., Hedenquist, J.W. and Inan, E.E., (2003) Sulfidation state of fluids in active and extinct hydrothermal systems: Transitions from porphyry to epithermal environments. Soc. Econ. Geol. Spec. Publ., no.10, pp.285–313.

    Google Scholar 

  • Gemmell, J.B. (2004) Low and intermediate-sulfidation epithermal deposits, ARC-AMIRAP, Australia, pp.57–63.

    Google Scholar 

  • Gemmel, B. (2006) Exploration implication of hydrothermal alteration associated with epithermal Au-Ag deposits, ARCAMIRAP 588, pp.1–5.

    Google Scholar 

  • Geological Survey of Iran (1995) Explanatory text of geochemical map of Moaleman (6960), Report No. 9, v.1, 33 p.

  • Giggenbach, W.F. and Stewart, M.K. (1982) Processes controlling the isotopic composition of steam and water discharges from steam vents and steam-heated pools in geothermal areas: Geothermics, v.11, pp.71–80.

    Article  Google Scholar 

  • Grancea, L. and Bailly, L. (2002) Fluid evolution in the Baia Mare epithermal gold- poly-metalic district. Carpathians, Romania, Mineralium Deposita, pp.630–647.

  • Haas, J.L. (1971) The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure: Econ. Geol., v.66, pp.940–946.

    Google Scholar 

  • Hassanzadeh, J., Ghazi, A.V. Axen, G. and Guest, B. (2002) Oligomiocene mafic-alkaline magmatism in north and northwest of Iran: Evidence for the separation of the Alborz from the Urumieh-Dokhtar magmatic arc. Geol. Soc. Amer. Abs. with Program, v.34, no.6, p.331.

    Google Scholar 

  • Hedenquist, J.W., Arribas R., A. and Gonzalez-Urien, E. (2000) Exploration for epithermal gold deposits: Reviews in Econ. Geol., v.13, pp.245–277.

    Google Scholar 

  • Hushmandzadeh, A.R., Alavi Naini, M. and Haghipour, A.A. (1978) Evolution of geological phenomenon in Troud area: Geol. Surv. Iran, Report No.H5, 136 p (in Persian).

  • Jimenez, F.A., Yumel, G.P. and Maglambayan, V.B. (2002) Shallow to near- surface, vein type epithermal gold mineralization at Lalab in the Sibutad gold deposit, Zambanaga Del North, Mindanao, Philippines. Jour. Asian Earth Sci., v.21, pp.119–133.

    Article  Google Scholar 

  • Kennedy, A.K., Grove, T.L. and Johnson, R.W. (1990) Experimental and major element constraints on the evolution of lavas from Lihir Island, Papua New Guinea. Contrib. Mineral. Petrol., v.104, pp.722–734.

    Article  Google Scholar 

  • Kouzmanov, K., Moritz, R., von Quadt, A.V., Chiaradia, M., Peytcheva, I., Fontignie, D., Ramboz, C. and Bogdanov, K. (2009) Late Cretaceous porphyry Cu and epithermal Cu-Au association in the Southern Panagyurishte District, Bulgaria: the paired Vlaykov Vruh and Elshitsa deposits. Mineralium Deposita, v.44, pp.611–646.

    Article  Google Scholar 

  • Moayyed, M. (2001) Geochemistry and petrology of volcanoplutonic bodies in Tarum area, PhD thesis (in Persian), p.256.

  • Muller, D., Rock, N.M.S. and Groves, D.I. (1992) Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings, a pilot study. Mineral. Petrol., v.46, pp.259–289.

    Article  Google Scholar 

  • Olade, M.A. and Morton, R.D. (1985) Origin of lead-zinc mineralization in the Southern Benue Trough, Nigeria-fluid inclusion and trace element studies. Mineralium Deposita, v.20, pp.76–80.

    Article  Google Scholar 

  • Organ, Y. and Gultekin, A. (2004) Geology, mineralogy and fluid inclusions data from the Arapucan Pb-Zn-Cu-Ag deposit, Canakle, Turkey. Jour. Asian Earth Sci., v.25, pp.629–642.

    Article  Google Scholar 

  • Palyanaova, G. (2008) Physicochemistry modeling of the coupled behavior of gold and silver in hydrothermal processes, gold fineness, Au/Ag ratios and their possible implications. Chem. Geol., v.255, pp.399–413.

    Article  Google Scholar 

  • Pearce, J.A. (1982) Trace element characteristics of lavas from destructive plate boundaries. In: R.S. Thorpe (Ed.), Wiley, New York, pp.525–548.

    Google Scholar 

  • Pearse, J.A. and Peate, D.W. (1995) Tectonic implications of the composition of the volcanic arc magmas. Annual Revi. Earth Planet. Sci., v.23, pp.251–285.

    Article  Google Scholar 

  • Roedder, E. (1972) Composition of fluid inclusions. USGS Prof. Paper Jj-440, p.164.

  • Roedder, E. (1984) Fluid inclusions: Reviews in Mineralogy, v.12, 644p.

  • Sawkins, F.J. (1990) Metal deposits in relation to plate tectonics. Springer, New York, 461p.

    Google Scholar 

  • Seward, T.M. and Barnes, H.L. (1997) Metal transport by hydrothermal ore fluids. In: H.L. Barnes (Ed.) Geochemistry of hydrothermal ore deposits. New York, John Wiley and Sons, pp.435–486.

    Google Scholar 

  • Schmidt, G., Palme, H. Kratz, K.L. and Kurat, G. (2000). Are highly siderophile elements ZPGE, Re and Au, fractionated in the upper mantle of the earth, new results on peridotites from Zabargad, Chem. Geol., v.163, pp.167–188.

    Article  Google Scholar 

  • Shamanian, H., Geffrey, W., Hedenquist, J., Hatori, K. and Ghaderi, M. (2003) The Gandy and Abolhassani epithermal prospects in the Alborz magmatic arc, Semnan province, Northern Iran. Econ. Geol., v.99, pp.691–712.

    Article  Google Scholar 

  • Shepherd, T.J., Rankin, A.H. and Alderton, D.H.M. (1985) A practical guides to fluid inclusion studies. Blackie Press, 239p.

  • Sillitoe, R.H. and Hedenquist, J.W. (2003) Linkages between volcano-tectonic settings, Ore-fluid compositions and epithermal precious metal deposits. Soc. Econ. Geol., Spec. Publ., No.10, pp.315–343.

    Google Scholar 

  • Simmons, S.F., Gemmell, B. and Sawkins, F.J. (1988) The Santo Nino silver-lead-zinc vein, Fresnillo district, Zacatecas, Mexico: Part II. Physical and chemical nature of ore-forming solutions: Econ. Geol., v.83, pp.1619–1641.

    Article  Google Scholar 

  • Simmons, S.F. (1991) Hydrothermal implications of alteration and fluid inclusion studies in the Fresnillo district, Mexico: Evidence for a brine reservoir and a descending water table during the formation of hydrothermal Ag-Pb-Zn ore bodies. Econ. Geol., v.86, pp.1579–1601.

    Article  Google Scholar 

  • Simmons, S.F., White, N.C. and John, D.A. (2005) Geological characteristics of epithermal precious and base metal deposits, Econ. Geol. 100th Anniversary Volume, Soc. Econ. Geologists, Littleton, CO, pp.485–522.

  • Stocklin, J. and Nabavi, M.H. (1973) 1/250000 Sheet Tectonic map of Iran, Geological Survey of Iran.

  • Stocklin, J. (1968) Structural history and Tectonic of Iran, a review, Amer. Assoc. Petrol Geol. Bull., v.52, pp.1229–1258.

    Google Scholar 

  • Wilkinson, J.J. (2001) Fluid Inclusion in hydrothermal ore deposit, Lithos 55, 229–272.

    Article  Google Scholar 

  • Wilson, M. (1989) Igneous petrogenesis, Unwin Hyman, 466p.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Ghasemi Siani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehrabi, B., Siani, M.G. Intermediate sulfidation epithermal Pb-Zn-Cu (±Ag-Au) mineralization at Cheshmeh Hafez deposit, Semnan province, Iran. J Geol Soc India 80, 563–578 (2012). https://doi.org/10.1007/s12594-012-0177-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-012-0177-x

Keywords

Navigation