Skip to main content

Advertisement

Log in

Geothermal reservoirs — A brief review

  • Published:
Journal of the Geological Society of India

Abstract

A brief discussion and review of the geothermal reservoir systems, geothermal energy and modeling and simulation of the geothermal reservoirs has been presented here. Different types of geothermal reservoirs and their governing equations have been discussed first. The conceptual and numerical modeling along with the representation of flow though fractured media, some issues related to non isothermal flow through fractured media, the efficiency of the geothermal reservoir, structure of the numerical models, boundary conditions and calibration procedures have been illustrated. A brief picture of the Indian scenario and some barriers related with geothermal power are discussed and presented thereafter. Finally some gaps of the existing knowledge and recent focuses of research are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antics, M.A. (1997) Computer simulation of the Oradea geothermal reservoir. Proceedings of the 22nd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, 27–29 January 1997, pp.491–495.

  • Antunez, E.U., Bodvarsson, G.S. and Walters, M.A. (1994) Numerical simulation study of the NorthwestGeysers geothermal field, a case study of the Coldwater Creek steamfield. Geothermics, v.23(2), pp.127–141.

    Article  Google Scholar 

  • Antunez, E.U., Menzies, A.J. and Sanyal, S.K. (1991) Simulating a challenging water dominated geothermal system: the Cerro Prieto field, Baja California, Mexico. Proceedings 16th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, 23–25 January 1991, pp.183–191.

  • Antunez, E.U., Sanyal, S.K., Menzies, A.J., Naka, T., Takeuchi, R., Iwata, S., Saeki, Y. and Inoue, T. (1990a) Forecasting well and reservoir behavior using numerical simulation, Uenotai geothermal field, Akita Prefecture, Japan. Trans. Geothermal Resources Council, v.14, pp.1255–1262.

    Google Scholar 

  • Antunez, E.U., Sanyal, S.K., Carella, R. and Guidi, A. (1990b) Quantitative verification of the hydrogeological model of the Mofete geothermal field, Campania, Italy. Trans. Geothermal Resources Council, v.14, pp.1263–1270.

    Google Scholar 

  • Arbogast, T. (1989) Analysis of the simulation of a single phase flow through a naturally fracture reservoir. SIAM Jour. Numer. Anal., v.26(1), pp.12–29.

    Article  Google Scholar 

  • Axelsson, G. and Bjornsson, G. (1993) Detailed three-dimensional modeling of the Botn hydrothermal systemin N-Iceland. Proceedings of the 18th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, 26–28 January 1993, pp.159–166.

  • Barenblatt, G.E., Zheltov, I.P. and Kochina, I.N. (1960) Basic Concepts in the Theory of Seepage of Homogeneous Liquids in Fissured Rocks. Jour. Appl. Math, v.24(5), pp.1286–1303.

    Google Scholar 

  • Battistelli, A., Calore, C. and Pruess, K. (1997) The simulator TOUGH2/EWASG for modeling geothermal reservoirs with brines and non-condensible gas. Geothermics, v.26(4), pp.437–464.

    Article  Google Scholar 

  • Battistelli, A., Calore, C., Rossi, R. and Wu, F. (1992) Reservoir engineering study of Nagqu geothermal field (Tibet autonomous region, PRC). Presented at the High-Temperature Geothermal Resources Workshop, Lhasa, 9–16 August 1992.

  • Battistelli, A., Yiheyis, A., Calore, C., Ferragina, C. and Abatneh, W. (1998a) Tendaho geothermal project (Ethiopia): reservoir engineering studies in the Dubti area. Proceedings of the World Renewable Energy Congress V, Florence, 1998, pp.2741–2745.

  • Brigham, W.E. and Morrow, W.B. (1974) P/Z behavior for geothermal steam reservoirs. Paper SPE 4899 presented at the 44th Annual California Regional Meeting of the Society of Petroleum Engineers, AIME, San Francisco, California.

  • Boardman, T.S., Ali Khan, M. and Antunez, E. (1996) TOUGH2/ PC application simulation project for Heber geothermal field, California, a progress report. Proceedings of the 21st Workshop on GeothermalReservoir Engineering, Stanford University, Stanford, California, 22–24 January 1996, pp.135–141.

  • Bodvarsson, G.S., Bjornsson, S., Gunnarsson, A., Gunnlaugsson, E., Sigurdsson, O., Stefansson, V. and Steingrimsson, B. (1990b) The Nesjavellir geothermal field, Iceland: 1. Field characteristics and development of a three-dimensional numerical model. Jour. Geothermal Sci. Tech., v.2(3), pp.189–228.

    Google Scholar 

  • Bodvarsson, G.S., Pruess, K., Haukwa, C. and Ojiambo, S.B. (1990a) Evaluation of reservoir model predictions for Olkaria East geothermal field, Kenya. Geothermics, v.19(5), pp.399–414.

    Article  Google Scholar 

  • Bodvarsson, G.S., Bjornsson, S., Gunnarsson, A., Gunnlaugsson, E., Sigurdsson, O., Stefansson, V. and Steingrimsson, B. (1991) The Nesjavellir geothermal field, Iceland: 2. Evaluation of the generatingcapacity of the system. Journal of Geothermal Science and Technology, v.2(4), pp.229–261.

    Google Scholar 

  • Bower, K.M. and Zyvoloski, G. (1997) A numerical model for thermo-hydro-mechanical coupling in fractured rock. Internat. Jour. Rock Mechanics and Mining Sci., v.34(8), pp. 1201–1211.

    Article  Google Scholar 

  • Brooks, R.H. and Corey A.T. (1964) Hydraulic Properties of Porous Media, Hydrolo. Pap.3. Civil Engineering Department. Colorado State University. Fort Collins.

    Google Scholar 

  • Brown, D., Duteaux, R., Kruger, P., Swenson, D. and Yamaguchi, T. (1999) Fluid circulation and heat extraction from engineered geothermal reservoirs. Geothermics, v.28, pp.553–572.

    Article  Google Scholar 

  • Brownell, D.H., S.K. GArg and Pritchett, W. (1977) Governing equations of geothermal reservoirs, Water Resour. Res., v.13(6), pp.929–935.

    Article  Google Scholar 

  • Burnell, J.G. (1992) Modeling mass, energy and chloride flows in the Rotorua geothermal system. Geothermics, v.21(1/2), pp.261–280.

    Article  Google Scholar 

  • Butler, S.J., Sanyal, S.K., Henneberger, R.C., Klein, C.W., Gutierrez, P., and De Leon V., J.S. (2000) Numerical modeling of the Cerro Prieto geothermal field, Mexico. Proceedings World Geothermal Congress, Kyushu-Tohuku, Japan, May 28–June 10, 2000, pp.2545–2550.

  • Cady, C.V. (1969) Model studies of geothermal fluid production. PhD thesis, Stanford University, Stanford, California.

    Google Scholar 

  • Chandrasekharam, D. (2000) Geothermal Energy Resources of India, IBC Conference “Geothermal Power Asia 2000” Manila, Philippines.

    Google Scholar 

  • Cheng, P. and Lau, K.H. (1973) Numerical modeling of Hawaiian geothermal resources. Geothermics, v.2, pp.90 93.

    Article  Google Scholar 

  • Dershowitz, W., Eiben, T., Follin, S. and Andersson, A. (1999) Alternative models project, Discrete fracture network modelling for performance assessment of Aberg. SKB R-99-43, Svensk K. AB.

  • Dickson, M.H. and Fanelli, M. (2004) What is Geothermal Energy? Istituto di Geoscienze e Georisorse, CNR, Pisa, Italy

    Google Scholar 

  • Finsterle, S. and Pruess, K. (1999) Automatic calibration of geothermal reservoir models through parallel computing on a workstation cluster. Proceedings of the 24th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, 25–27 January 1999, pp.123–130.

  • Finsterle, S., Pruess, K., Bullivant, D.P. and O’sullivan, M.J. (1997) Application of inverse modeling to geothermal reservoir simulation. Proceedings of the 22nd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, 27–29 January 1997, pp.309–316.

  • Gerke, H.H. and Van Genuchten, M.Th. (1993) A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media. Water. Resour. Res., v.29, pp.305–319.

    Article  Google Scholar 

  • Gerke, H.H. and Van Genuchten, M.Th. (1993b) Evaluation of a first order water transfer term for variably saturated dualporosity ?ow models. Water Resour. Res., v.29, pp.1225–1238.

    Article  Google Scholar 

  • Ghassemi, A., Nygren, A. and Cheng, A. (2008) Effects of heat extraction on fracture aperture: A poro-thermoelastic analysis. Geothermics, v.37, pp.525–539.

    Article  Google Scholar 

  • Ghassemi, A. and Suresh Kumar, G. (2007) Changes in fracture aperture and fluid pressure due to thermal stress and silics dissolution/precipitation induced by heat extraction from subsurface rocks. Geothermics, v.36, pp.115–140.

    Article  Google Scholar 

  • Grant, M.A. (1983) Geothermal reservoir modeling. Geothermics, v.12, No.4, pp.251–263.

    Article  Google Scholar 

  • Gylling B., N., Marsic, K., Konsult AB, L., H. and D., H. (2004) Applications of hydrogeological modelling methodology using NAMMU and CONNECTFLOW. SKB R-04-45, Svensk K. AB.

  • Hadgu, T., Zimmerman, R.W. and Bodvarsson, G.S. (1995) Coupled reservoir-wellbore simulation of geothermal reservoir behavior. Geothermics, v.24(2), pp.145–166.

    Article  Google Scholar 

  • Hanano, M. (1992a) Reservoir engineering studies of the Matsukawa geothermal field, Japan. Trans. Geothermal Resources Council, v.16, pp.643–650.

    Google Scholar 

  • Hanano, M. (1992b) Simulation study of the Matsukawa geothermal reservoir: natural state and its response to exploitation. Jour. Energy Resources Tech., v.114, pp.309–314.

    Article  Google Scholar 

  • Hanano, M. and Seth, M.S. (1995) Numerical modeling of hydrothermal convection systems includingsuper-critical fluid. Proceedings World Geothermal Congress’ 95, Florence, 18–31 May 1995, pp.1681–1686.

  • Hayba, D.O. and Ingebritsen, S.E. (1997) Multiphase groundwater flow near cooling plutons. Jour. Geophys. Res., v.102(B6), pp.12235–12252.

    Article  Google Scholar 

  • Hochstein, M.P. (1990) Classification and assessment of geothermal resources. In: M.H. Dickson and M. Fanelli (Eds.), Small geothermal resources, UNITAEWNDP Centre for Small Energy Resources, Rome, Italy, pp.31–59.

  • Hu, B. (1995) Reservoir simulation of the Yangbajian geothermal field in Tibet, China. Proceedings World Geothermal Congress’ 95, Florence, 18–31 May 1995, pp.1691–1695.

  • Indraratna, B., Ranjith, P.G., Price, J.R. and Gale, W. (2003) Two-phase (air and water) flow through rock joints: analytical and experimental studies. Jour. Geotech. Geoenviron. Engg., v.129(10), pp.918–925.

    Article  Google Scholar 

  • Ingebritsen, S.E. and Sorey, M.L. (1985) Quantitative analysis of the Lassen hydrothermal system, northcentral California. Water Resources Res., v.21(6), pp.853–868.

    Article  Google Scholar 

  • Kiryukhin, A.V. (1996) Modeling studies: the Dachny geothermal reservoir, Kamchatka, Russia. Geothermics, v.25(1), pp.63–90.

    Article  Google Scholar 

  • Kissling, W.M. (1995) Extending MULKOM to super-critical temperatures and pressures. Proceedings World Geothermal Congress’ 95, Florence, 18–31 May 1995, pp.1687–1690.

  • Kocabas, I. (2005) Geothermal reservoir characterization via thermal injection backflow and interwell tracer testing. Geothermics, v.34. pp.27–46.

    Article  Google Scholar 

  • Kohl, T., Evans, K.F., Hopkirk, R.J. and Rybach, L. (1995a) Coupled hydraulic and mechanical considerations for the simulation of hot dry rock reservoirs. Geothermics, v.24(3), pp.333–343.

    Article  Google Scholar 

  • Martin, J.C. (1975) Analysis of internal steam drive in geothermal reservoirs. Paper SPE 5382 presented at the 45th Annual California Regional Meeting of the Society of Petroleum Engineers, AIME, Ventura, California.

  • Menzies, A.J. and Pham, M. (1995) A field-wide numerical simulation model of The Geysers geothermal field, California, USA. Proc. World Geothermal Congress’ 95, Florence, 18–31 May 1995, pp.1697–1702.

  • Mercer Jr., J.W. and Pinder, G.F. (1973) Galerkin finite-element simulation of a geothermal reservoir. Geothermics, v.2, pp.81–89.

    Article  Google Scholar 

  • Mercer, J.W., C.R Faust and Pinder, G.F. (1974) Geothermal reservoir simulation, Proceedings of the Conference on Reserch for the Development of Geothermal Energy Resources, Rep.RA-N-74-159. Nat. Sci. Found., Pasadena, Calif., Sept. 23–25.

  • Mercer, J.W. and Faust, C.R. (1979) Geothermal reservoir simulation.1.Mathematical models for liquid and vapordominated hydrothermal systems. Water Resour. Res., v.15(3), pp.653–671.

    Article  Google Scholar 

  • Mercer, J.W. and Faust, C.R. (1979). A review of numerical simulation of hydrological systems. Hydrological Sciences-Bulletin-des Sciences Hydrologiques, v.24, 3, 9.

    Google Scholar 

  • Mercer, J.W. and Faust, C.R. (1979) Geothermal reservoir simulation. 2. Numerical solution techniques for liquid and vapor-dominated systems. Water Resour. Res., v.15(3), pp.653–671.

    Article  Google Scholar 

  • Mercer, J.W. and Faust, C.R. (1979) Geothermal reservoir simulation. 3. Application of liquid and vapor-dominated modelling techniques to Wairakei, New Zealand. Water Resour. Res., v.15(3), pp.653–671.

    Article  Google Scholar 

  • Moridis, G. and Pruess, K. (1998) T2SOLV: An enhanced package of solvers for the TOUGH2 family of reservoir simulation codes. Geothermics, v.27(4), pp.415–444.

    Article  Google Scholar 

  • Muralidhar, K. (1990) Flow and transport in single rock fractures. Jour. Fluid. Mech. v.215, pp.481–502.

    Article  Google Scholar 

  • Murray, L. and Gunn, C. (1993) Toward integrating geothermal reservoir and wellbore simulation: TETRAD and WELLSIM. Proceedings of the 15th New Zealand Geothermal Workshop, Auckland, New Zealand, 10–12 November 1993, pp.279–284.

  • Noorishad, J. and Tsang, C.-F. (1996) ROCMAS simulator: a thermohydromechanical computer code. Stephansson, Jing and Tsang (eds.), Coupled Thermo-hydro-mechanical Processes of Fractured Media, Elsevier, Amsterdam, pp.551–558.

    Chapter  Google Scholar 

  • Natarajan, N. and Suresh Kumar, G. (2010) Effect of non linear sorption on solute transport in a coupled sinusoidal fracture-matrix system. Internat. Jour. Environ. Sci., v.1(3), pp.323–333.

    Google Scholar 

  • O’sullivan, M.J. (1985) Geothermal reservoir simulation. Energy Res., v.9, pp.313–332.

    Google Scholar 

  • O’sullivan, M.J., Barnett, B.G. and Razali, M.Y. (1990) Numerical simulation of the Kamojang geothermal field, Indonesia. Trans. Geothermal Resources Council, v.14, pp.1317–1324.

    Google Scholar 

  • O’sullivan, M.J., Bullivant, D.P., Follows, S.E., and Mannington, W.I. (1998) Modeling of the Wairakei -Tauhara geothermal system. Proceedings of the TOUGH Workshop’ 98, Berkeley, California, 4–6 May 1998, pp.1–6.

  • O’sullivan, M.J., Bodvarsson, G.S., Pruess, K., and Blakeley, M.R. (1985) Fluid and heat flow in gas-rich geothermal reservoirs. Soc. Petroleum Engg. Jour., v.25(2), pp.215–226.

    Google Scholar 

  • O’sullivan, M.J., Pruess, K. and Lippmann, M.J. (2001) State of the Art of Geothermal Reservoir Simulation, Geothermics, v.30, pp.395–429

    Article  Google Scholar 

  • Palliser, C. and Mckibbin, R. (1998) A model for deep geothermal brines. I: T-p-X state-space description. Transport in Porous Media, v.33(1/2), pp.65–80.

    Article  Google Scholar 

  • Pham, M. and Menzies, A.J. (1993) Results from a field-wide numerical model of The Geysers geothermal field. Trans. Geothermal Resources Council, v.17, pp.259–265.

    Google Scholar 

  • Phillip, J.R. (1968) The theory of absorption in aggregated media. Aust. Jour. Soil Res. v.6, pp.1–19.

    Article  Google Scholar 

  • Pritchett, J.W. and Garg, S.K. (1995) A modeling study of the Oguni geothermal field, Kyushu, Japan. Proc. World Geothermal Congress’ 95, Florence, 18–31 May 1995, pp.1727–1733.

  • Pritchett, J.W. (1995) STAR: A geothermal reservoir simulation system. Proc. World Geothermal Congress’ 95, Florence, 18–31 May 1995, pp.2959–2963.

  • Pritchett, J.W., Rice, M.H. and Riney, T.D. (1981) Equation-of-state for Water-Carbon Dioxide Mixtures: Implications for Baca Reservoir. Report DOE/ET/27163-8, Systems, Science and Software, La Jolla, CA.

  • Pruess, K. (2008) Numerical modeling of water injection into vapor-dominated geothermal reservoirs. Lawrence Berkeley National Laboratory. eScholarship. University of California.

  • Pruess, K. (1992) Brief guide to the MINC-method for modeling flow and transport in fractured media. Earth science division. Lawrence Berkeley Laboratory, University of California, Berkeley.

    Google Scholar 

  • Pruess, K. (2002) Mathematical Modeling of Fluid Flow and Heat Transfer in Geothermal Systems-an introduction in five lectures. Geothermal training programme, IS-108, Reykjavik, Iceland.

  • Pruess, K. (1990b) TOUGH2-A General Purpose Numerical Simulator for Multiphase Fluid and Heat flow. Report: LBL-29400, Lawrence Berkeley Laboratory, Berkeley, California.

    Google Scholar 

  • Razdan, P.N., Agarwal, R.K. and Singh, R. (2008) Geothermal energy resources and its potential in India. e-Journal Earth Science India, v.1(1), pp.30–42.

    Google Scholar 

  • Richards, H., Parker, R., Green, A., Jones, R., Nicholls, J., Nicol, D., Randall, M., Richars, S., Stewart, R. and Willisrichards, J. (1994) The performance and characteristics of the experimental Hot Dry Rock geothermal reservoir at Rosemanowes, Cornwall (1985–1988). Geothermics, v.23, pp.73–109.

    Article  Google Scholar 

  • Sakagawa, Y., Takahashi, M., Hanano, M., Ishido, T., and Demboya, N. (1994) Numerical simulation of theMori geothermal field, Japan. Proceedings of the 19th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, 18–20 January 1994, pp.171–178.

  • Sanyal, S.K., Antunez, E.U., Abe, M. and Nakanishi, S. (1990) Numerical modeling of a mature high temperaturegeothermal reservoir: a case history from the Onikobe field, Miyagi prefecture, Japan. Transactions Geothermal Resources Council, v.14, pp.1339–1345.

    Google Scholar 

  • Sanyal, S.K., Pham, M., Iwata, S., Suzuki, M., Inoue, T., Yamada, K. and Futagoishi, M. (2000 b) Numerical simulation of the Wasabizawa geothermal field, Akita Prefecture, Japan. Proc. World Geothermal Congress, Kyushu-Tohuku, Japan, May 28–June 10, 2000, pp.2189–2194.

  • Sarak, H., Onur, M. and Satman, A. (2003) Applications of lumped parameter models for low temperature geothermal reservoirs. Proc. 28th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, January 27–29, 2003 SGP-TR-173.

  • Selroos, J.O., Walker, D.D., Ström, A., Gylling, B. and Follin, S. (2002) Comparison of alternative modelling approaches for groundwater flow in fractured rock. Jour. Hydrology, v.257(1–4), pp.174–188.

    Article  Google Scholar 

  • Simuonek, J., Wendroth, O., Wypler, N. and Van Genuchten, M.Th. (2001) Nonequilibrium water ?ow characterized from an upward in?ltration experiment. Eur. Jour. Soil Sci., v.52(1), pp.13–24.

    Article  Google Scholar 

  • Stopa, J. and Wojnarowski, P. (2006) Analytical model of cold water movement in a geothermal reservoir. Geothermics, v.35, pp.59–69.

    Article  Google Scholar 

  • Suresh Kumar, G. and Ghassemi, A. (2005). Numerical modeling of non-isothermal quartz dissolution/precipitation in a coupled fracture-matrix system. Geothermics, v. 34, pp.411–439.

    Article  Google Scholar 

  • Tenma, N., Ikawa, T. and Nagai. M. (1997) Productivity of a recent three-well system at Hijiori HDR test site. Proc 22nd workshop on geothermal reservoir engineering. Stanford Univeristy. Stanford, CA., Jan. 27–29, 1997, SGR-TR-155, pp. 191–194.

  • Todesco, M. (1995) Modeling of the geothermal activity at Vulcano (Aeolian Islands, Italy). Proceedings World Geothermal Congress’ 95, Florence, 18–31 May, 1995, pp.1309–1314.

  • Tureyen, O.I, Onur, M. and Sarak H. (2009) A generalized nonisothermal lumped parameter model for liquid dominated geothermal reservoir. Proc. 34th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9–11, 2009, SGP-TR-187.

  • Van Genutchen, M.T.H. (1980) A closed form equation for predicting the hydraulic conductivity in soils. Soil. Sci. Am. Jour., v.44, pp.892–898.

    Article  Google Scholar 

  • Vinsome, P.K.W. and Shook, G.M. (1993) Multi-purpose simulation. Jour. Petroleum Sci.Engg., v.9(1), pp.29–38.

    Article  Google Scholar 

  • Warren, J.E. and Root, P.J. (1963) The behavior of naturally fractured reservoirs. Soc. Petroleum Engg. Jour. September, Trans., AIME, v.228, pp.245–255

    Google Scholar 

  • White, S.P., Kissling, W.M. and Mcguinness, M.J. (1997) Models of the Kawerau geothermal reservoir. Trans. Geothermal Resources Council, v.21, pp.33–40.

    Google Scholar 

  • White, D.E., Muffler, L.P.J. and Truesdell, A.H. (1971) Vapor-dominated hydrothermal systems compared with hot water systems. Econ. Geol. v.66, pp.75–97.

    Article  Google Scholar 

  • Whiting, R.L. and Ramey, H.J. Jr. (1969) Application of material and energy balances to geothermal steam production. Jour. Petrol. Tech., v.21(7), pp.893–900.

    Google Scholar 

  • Williamson, K.H. (1990) Reservoir simulation of The Geysers geothermal field. Proceedings of the 15thWorkshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, 23–25 January 1990, pp.113–123.

  • Williamson, K.H. (1992) Development of a reservoir model of The Geysers geothermal field. Monograph on the Geysers Geothermal Field. Geothermal Resources Council, Special Report v.17, pp.179–187.

    Google Scholar 

  • Witherspoon, P.A., Neuman, S.P., Sorey, M.L. and Lippman, M.J. (1975) Modeling of geothermal systems, paper presented at International meeting on geothermal phenomena and its application, Accad. Nat.dei Lincei, Rome, Italy, March 3–5.

  • Wu, Y.S. and Pruess, K. (2000) Integral solutions for transient fluid flow through a porous medium with pressure dependent permeability. Internat. Jour. Rock Mechanics and Mining Sci., v.37, pp.51–60.

    Article  Google Scholar 

  • Yano, Y. and Ishido, T. (1998) A reservoir engineering study on production behavior of deep-seated geothermal reservoirs. Trans. Geothermal Resources Council, v.22, pp.503–506.

    Google Scholar 

  • Zyvoloski, G.A. and O’sullivan, M.J. (1980) Simulation of a gas-dominated two-phase geothermal reservoir. Society of Petroleum Engineers Journal. v.20, pp.52–58.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayantan Ganguly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganguly, S., Mohan Kumar, M.S. Geothermal reservoirs — A brief review. J Geol Soc India 79, 589–602 (2012). https://doi.org/10.1007/s12594-012-0098-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-012-0098-8

Keywords

Navigation