Skip to main content
Log in

2-D velocity structure in Kerala-Konkan basin using traveltime inversion of seismic data

  • Published:
Journal of the Geological Society of India

Abstract

The existence of gas-hydrates in marine sediments increases the seismic velocity, whereas even a small amount of underlying free-gas reduces the velocity considerably. The change in velocities against the background (without gas-hydrates and free-gas) velocity can be used for identification and assessment of gas-hydrates. Traveltime inversion of identifiable reflections from large offset multi channel seismic (MCS) experiment is an effective method to derive the 2-D velocity structure in an area. We apply this method along a seismic line in the Kerala-Konkan (KK) offshore basin for delineating the gas-hydrates and free-gas bearing sediments across a bottom simulating reflector (BSR). The result reveals a four layer 2-D shallow velocity model with the topmost sedimentary layer having velocity of 1,680–1,740 m/s and thickness of 140–190 m. The velocity of the second layer of uniform thickness (110 m) varies from 1,890 to 1,950 m/s. The third layer, exhibiting higher velocity of 2,100–2,180 m/s, is interpreted as the gas-hydrates bearing sediment, the thickness of which is estimated as 100 to 150 m. The underlying sedimentary layer shows a reduction in seismic velocity between 1,620 to 1,720 m/s. This low-velocity layer with 160–200 m thickness may be due to the presence of free-gas below the gas-hydrates layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Biswas, S.K. and Singh, N.K. (1988) Western Continental Margin of India and Hydrocarbon Potential of Deep-Sea Basins. Proc. 7th offshore southeast Asia Conference, Singapore, 2–5 February, pp.170–180.

  • Chand, S. and Minshull, T.A. (2003) Seismic constraints on the effects of gas hydrate on sediment physical properties and fluid flow: a review. Geofluids, v.3, pp.275–289.

    Article  Google Scholar 

  • Cordero, I.D.L.C.V., Tinivella, U., Accaino, F., Loreto, M.F., Fanucci, F. and Reichert, C. (2009) Analyses of bottom simulating reflections offshore Arauco and coyhaique (Chile). Geo-Mar. Lett., v.30, pp.271–281.

    Article  Google Scholar 

  • Collett, T.S., Riedel, M., Cochran, J., Boswell, R., Presley, J., Kumar, P., Sathe, A.V., Sethi, A.K., Lall, M., Sibal, V.K. and The NGHP Exp. 01 Scientists (2008) NGHP expedition 01 (2006), Initial reports, Directorate General of Hydrocarbons, NOIDA and Ministry of Petroleum & Natural Gas, India, 4 volumes.

    Google Scholar 

  • Gei, D. and Carcione, J. M. (2003) Acoustic properties of sediments saturated with gas hydrate, free gas and water. Geophys. Pros., v.51, pp.141–157.

    Article  Google Scholar 

  • Helgerud, M. B., Dvorkin, J., Nur, A., Sakai, A. and Collett, T. (1999) Elastic wave velocity in marine sediments with gas hydrates: effective medium modeling. Geophys. Res. Lett., v.26, pp.2021–2024.

    Article  Google Scholar 

  • Lee, M.W., Hutchinson, D.R., Collett, T.S. and Dillon, W.P. (1996) Seismic velocities for hydrate-bearing sediments using weighted equation. Jour. Geophys. Res., v.101, pp.20347–20358.

    Article  Google Scholar 

  • Mackay, M.E., Jarrad, R.D., Westbrook, G.K. and Hyndmann, R. D. (1994) Shipboard Scientific Party of ODP leg 146, Origin of bottom simulating reflectors: geophysical evidence from the cascadia accretionary prism. Geology, v.22, pp.459–462.

    Article  Google Scholar 

  • Nambiar, A. and Rajagopalan, G.B. (1991), Radiocarbon dates of sediment cores from inner continental shelf off Karwar, west coast of India. Curr. Sci., v.61, pp.353–354.

    Google Scholar 

  • Norton, L.O. and Sclater. , (1979), J.G., A Model for the Evolution of Indian Ocean and Breakup of Gondwanaland. Jour. Geophys. Res., v.84, pp.6803–6830.

    Article  Google Scholar 

  • Ojha, M. and Sain, K. (2007) Seismic velocities and quantification of gas hydrates from AVA modeling in the western continental margin of India. Marine Geophys. Res., v.28, pp.101–107.

    Article  Google Scholar 

  • Ojha, M. and Sain, K. (2008) Appraisal of gas hydrates/free-gas from VP/VS ratio in the Makran accretionary prism. Marine & Petroleum Geol., v.25, pp.637–644.

    Article  Google Scholar 

  • Ojha, M. and Sain, K. (2009) Seismic attributes for identifying gas hydrates and free-gas zones: application to the Makran accretionary prism, Episodes, v.32, pp.264–270.

    Google Scholar 

  • Ojha, M., Sain, K. and Minshull, T.A. (2010) Assessment of gas hydrates saturation in the Makran accretionary prism using the offset dependence of seismic amplitudes. Geophysics, v.75, pp.C1–C6, 10.1190/1.3315861.

    Article  Google Scholar 

  • Paropkari, A.L., Prakash Babu, C. and Antanio, M.A. (1992) Critical evaluation of depositional parameters controlling the variability of organic carbon in Arabian Sea sediments. Mar. Geol., v.107, pp.213–226.

    Article  Google Scholar 

  • Paull, C.K. and Dillon, W.P. (2001) Natural Gas hydrates: Occurrence, distribution, and detection; American Geophysical Union, Washington, DC, 315p.

    Book  Google Scholar 

  • Pecher, I.A. and Holbrook, W.S. (2003) Seismic methods for detecting and quantifying marine methane hydrate/free gas reservoirs. In: M.D. Max (Ed.), Natural gas hydrates in oceanic and permafrost environments. Kluwer Academic Publishers, Dordrecht, pp.275–294.

    Chapter  Google Scholar 

  • Raju, A., Sinha, R., Ramakrishna, M., Bisht, H. and Nashipudi, V. (1981), Structure, tectonic and hydrocarbon prospect of Kerala-Laccadive basin. In: R. Prasad Rao (Ed.), Workshop on Geological Interpretation of Geophysical Data. Oil and Natural Gas Commission, Dehradun, pp.123–127.

    Google Scholar 

  • Rao, Y.H., Subrahmanium, C., Rastogi, A. and Deka, B. (2001) Anamalous features related to gas/gas hydrate occurrences along the western continental margins of India. Geol. Mar. Lett., v.21, pp.1–8.

    Article  Google Scholar 

  • Ramana, M.V., Ramprasad, T., Desa, M., Sathe, A.V. and Sethi, A.K. (2006) Gas hydrate-related proxies inferred from multidisciplinary investigations in the Indian offshore areas. Curr Sci., v.91, pp.183–189.

    Google Scholar 

  • Rowe, M.M. and Gettrust, J.F. (1993) Fine structure of methane hydrate-bearing sediments on the Blake Outer Ridge as determined from deep-tow multi-channel seismic data. Jour. Geophys. Res., v.98, pp.463–473.

    Article  Google Scholar 

  • Sain, K., Minshull, T.A., Singh, S.C. and Hobbs, R.W. (2000) Evidence for a thick free-gas layer beneath the bottomsimulating reflector in the Makran accretionary prism. Marine Geol., v.164, pp.3–12.

    Article  Google Scholar 

  • Sain, K., Singh, A.K., Thakur, N.K. and Khanna, R. (2009) Seismic quality factor observations for gas-hydrate-bearing sediments on the western margin of India. Mar. Geophys. Res., v.30, pp.137–145

    Article  Google Scholar 

  • Sain, K. and Gupta, H. (2008) Gas-hydrates: Indian scenario. Jour. Geol. Soc. India, v.72, pp.299–311.

    Google Scholar 

  • Sain, K. and Ojha, M. (2008a). Estimation of gas hydrates and free-gas concentrations using modeling and crossplot of seismic amplitudes from the bottom simulating reflector, Advances in Geosciences. Ocean Science, v.18, pp.181–196.

    Google Scholar 

  • Sain, K. and Ojha, M. (2008b) Identification and quantification of gas-hydrates: A viable source of energy in the 21st century; Mem. Geol. Soc. India, no.68, pp.273–288.

  • Sain, K., Ghosh, R. and Ojha, M. (2010) Rock physics modeling for assessing gas hydrate and free gas: a case study in the Cascadia accretionary prism. Mar. Geophys. Res., v.31, pp.109–119

    Article  Google Scholar 

  • Satyavani, N., Uma Shankar, Thakur, N.K. and Reddi, S.I. (2002) Probable gas hydrate/free gas model over western continental margin of India. Mar. Geophys. Res., v.23, pp.423–430.

    Article  Google Scholar 

  • Singh, N.K. and Lal, N.K. (1993) Geology and Petroleum Prospects of Konkan-Kerala Basin. Proc. Second Seminar on Petroliferous Basins of India, Vol 2, Dehradun, pp.461–469.

    Google Scholar 

  • Shankar, U. and Sain, K. (2007) Specific character of the bottom simulating reflectors near mud diapirs: Western margin of India. Curr. Sci., v.93, pp.997–1002.

    Google Scholar 

  • Shankar, U., Sinha, B., Thakur, N.K. and Khanna, R.K. (2005) Amplitude versus offset modeling of the bottom simulating reflection associated with submarine gas-hydrates. Mar. Geophys. Res., v.26, pp.29–35.

    Article  Google Scholar 

  • Shipley, T.H., Houston, M.H., Buffer, T.T., Shaub, F.J., Mcmillen, K.J., Ladd, J.W. and Worzel, J.L. (1979) Seismic reflection evidence for widespread occurrence of possible gashydrate horizons on continental slopes and rises. AAPG Bull., v.63, pp.2204–2213.

    Google Scholar 

  • Singh, S.C., Minshull, T.A. and Spence, G.D. (1993) Velocity structure of a gas hydrate reflector. Science, v.260, pp.204–207.

    Article  Google Scholar 

  • Sloan, E.D. (1998) Clathrate Hydrate of Natural Gases; Marcel Dekker Inc., New York, 705p.

    Google Scholar 

  • Taylor, C.E. and Kwan, J.T. (2004) Advances in the study of gashydrates; Kluwer Academic/Plenum Publishers, New York, 270p.

    Book  Google Scholar 

  • Veerayya, M., Karisiddaiah, S.M., Vora, K.H., Wagle, B.G. and Almeida, F. (1998) Detection of gas-charged sediments and gas hydrate horizons along the western continental margin of India. In: J.P. Henriet and J. Mienert (Eds.), Gas Hydrates: Relevance to World Margin Stability and Climate Change. Geol. Soc. London, Spec. Publ., v.137, pp.239–253.

  • Vijayarao, V., Sain, K. and Krishna, V.G. (2007) Modeling and inversion of single-ended refraction data from the shot gathers of multifold deep seismic reflection profiling — an approach for deriving the shallow velocity structure. Geophys. Jour. Internat., v.169, pp.507–514.

    Article  Google Scholar 

  • Zelt, C.A. and Smith, R.B. (1992) Seismic travel-time inversion for 2-D crustal velocity structure. Geophys. Jour. Int., v.108, pp.16–34.

    Article  Google Scholar 

  • Zelt, C. A. (1999) Modeling strategies and model assessment for wide-angle seismic traveltime data. Geophys. Jour. Int., v.135, pp.1101–1112.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalachand Sain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, P.K., Sain, K. 2-D velocity structure in Kerala-Konkan basin using traveltime inversion of seismic data. J Geol Soc India 79, 53–60 (2012). https://doi.org/10.1007/s12594-012-0006-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-012-0006-2

Keywords

Navigation