Skip to main content

Advertisement

Log in

Amplitude-versus-offset modeling of the bottom simulating reflection associated with submarine gas hydrates

  • Published:
Marine Geophysical Researches Aims and scope Submit manuscript

Abstract

Velocity analysis of multi-channel seismic (MCS) data and amplitude-versus-offset (AVO) modeling provides an efficient way of identifying gas hydrate and free gas, and therefore the nature of the bottom-simulating reflector (BSR). Additionally, AVO modeling also yields estimates of the hydrate concentration and free gas saturation across the BSR in terms of velocity distribution. In the present study, we apply directivity correction in order to accentuate the AVO behavior. Modeling for AVO pattern of the observed BSR over the Kerala–Konkan Offshore Basin may provide the probable velocity distribution across the BSR and thereby infer whether hydrate or hydrate/free gas model governs the AVO observations. Initial results indicate the possible presence of free gas underlying the gas hydrates-saturated sediments in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • K. Aki P.G. Richards (1980) Quantitative Seismology Theory and Methods: Freeman W.H. and Co. New York

    Google Scholar 

  • K. Andreassen P.E. Hart A. Grantz (1995) ArticleTitleSeismic studies of a bottom simulating reflection related to gas hydrate beneath the continental margin of the Beaufort Sea J.Geophys. Res. 100 12659–12673 Occurrence Handle10.1029/95JB00961

    Article  Google Scholar 

  • K. Andreassen P.E. Hart M. MacKay (1997) ArticleTitleAmplitude versus offset modeling of the bottom simulating reflection associated with submarine gas hydrates Mar. Geol. 137 25–40 Occurrence Handle10.1016/S0025-3227(96)00076-X

    Article  Google Scholar 

  • B. Ashalatha C. Subramanyam R.N. Singh (1991) ArticleTitleOrigin and compensation of Chagos–Laccadive Ridge, and bathymetry data Earth Planet. Sci. Lett. 105 47–54 Occurrence Handle10.1016/0012-821X(91)90119-3

    Article  Google Scholar 

  • C. Ecker D. Lumley (1993) ArticleTitleAVO analysis of methane hydrate seismic data SEP 79 161–176

    Google Scholar 

  • Gupta, H.K., Subramanyam, C., Rao, H.Y., Thakur, N.K., Rao, T.G., Ashalatha, B., Khanna, R., Reddi S.I. and Drolia, R.K., 1998, Analysis of single channel seismic data along the continental margin of India for gas hydrates, National Geophysical Research Institute (NGRI) Tech Rep. No. −98-Lithos-221.

  • J.W. Horton (1959) Fundamentals of sonar United States Naval Institute Annapolis

    Google Scholar 

  • R.D. Hyndmann G.D. Spence (1992) ArticleTitleA seismic study of methane hydrate marine bottom simulating reflectors J. Geophys. Res. 97 6683–6698

    Google Scholar 

  • Hyndman, R.D., Spence, G.D., Chapman, R., Riedel, M. and Edwards, R.N. 2001, Geophysical studies of marine gas hydrate in northern Cascadia, in: Natural Gas Hydrate, American Geophysical Union Monograph.

  • Lee, M.W., Hutchtinson, D.R., Dillon, W.P., Miller, J.J., Agena, W.F. and Swift, B.A., 1993, Use of Seismic data in estimating the amount of in-situ gas hydrates in deep marine sediment. in:Future of Energy gases, USGS Professional Paper 1570.

  • MacKay, M.E., Jarrad, R.D., Westbrook, G.K., Hyndmann, R.D. and the Shipboard Scientific Party of ODP leg 146, 1994, Origin of bottom simulating reflectors: Geophysical evidence from the Cascadia accretionary prism, Geology 22, 459–462.

  • T.A. Minshull S.C. Singh G.K. Westbrook (1994) ArticleTitleSeismic structure at a gas hydrate reflector, offshore western Colombia, from full waveform inversion J. Geophys. Res. 99 4715–4734 Occurrence Handle10.1029/93JB03282

    Article  Google Scholar 

  • J.J. Miller M.W. Lee R. Huene (1991) ArticleTitleAn analysis of a seismic reflection from the base of a gas hydrate zone, Offshore Peru Amer. Assoc. Petrol. Geol. Bull. 75 910–924

    Google Scholar 

  • J. Mienert J. Posewang D. Lukas (2001) Changes in the hydrate stability zone on the Norwegian Margin and their consequence for methane and carbon releases into the ocean P. Schäfer W. Ritzrau M. Schlüter J. Thiede (Eds) The Northern North Atlantic: A changing environment Springer Berlin, Germany 259–280

    Google Scholar 

  • I.O. Norton J.G. Sclater (1979) ArticleTitleA model for the evolution of the Indian Ocean breakup of Gondwana land J. Geophys. Res. 84 6803–6830 Occurrence Handle10.1029/JB084iB12p06803

    Article  Google Scholar 

  • Naini B.R. and Talwani M. (1983) Structural framework and evolutionary history of the continental margin of western India, in studies in continental margin geology Watkins, J.S., and Drake, C.L., (eds.),Amer. Assoc. Petrol. Geol. Memoir, 34, 167–191.

  • W.J. Ostrander (1984) ArticleTitlePlane-wave reflection coefficients for gas sands at nonnormal angles of incidence Geophysics 49 1637–1649 Occurrence Handle10.1190/1.1441571

    Article  Google Scholar 

  • Y.H. Rao S.I. Reddi T.G. RameshKhanna Rao N.K. Thakur C. Subrahmanyam (1998) ArticleTitlePotential distribution of methane hydrate along the Indian continental margins Curr. Sci. 74 466–468

    Google Scholar 

  • Y.H. Rao C. Subramanyam A. Rastogi B. Deka (2001) ArticleTitleAnamalous features related to gas/gas hydrate occurrences along the western continental margins of India Geo-Marine Lett. 21 1–8

    Google Scholar 

  • M.M. Rowe J.F. Gettrust (1993) ArticleTitleFine structure of methane hydrate bearing sediments on the Blake Outer Ridge as determined from deep-tow multichannel seismic data J. Geophys. Res. 98 463–473

    Google Scholar 

  • R.E. Sheriff L.P. Geldart (1995) Exploration Seismology EditionNumber2 Cambridge University Press Cambridge

    Google Scholar 

  • S.C. Singh T.A. Minshull G.D. Spence (1993) ArticleTitleVelocity structure of a gas hydrate reflector Science 260 204–207

    Google Scholar 

  • Veerayya, M., Karisiddaiah, S.M., Vora, K.H., Wagle, B.G. and Almeida, F., 1998, Detection of gas charged sediments of gas hydrate horizons along the WCMI, in gas hydrate: relevance to world margin stability and climate change, Henriet, J.P., and Mienert, J. (eds.), Geol. Soc. India Sp. Pub.137, 239–253.

  • Zoeppritz K. 1919. Erdbebenwellen VIII B, On the reflection and penetration of seismic waves through unstable layers, Goettinger Nachr, 66–84.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Thakur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shankar, U., Sinha, B., Thakur, N.K. et al. Amplitude-versus-offset modeling of the bottom simulating reflection associated with submarine gas hydrates. Mar Geophys Res 26, 29–35 (2005). https://doi.org/10.1007/s11001-005-2134-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11001-005-2134-1

Keywords

Navigation