Skip to main content
Log in

Mylonitic microfabrics from the rocks of MCT zone in Alakhnanda valley, Garhwal Himalaya

  • Published:
Journal of the Geological Society of India

Abstract

MCT Zone of Alakhnanda valley is a major ductile shear zone in Garhwal Himalaya, which is characterised by different types of mylonite rocks. On the basis of grain size and the percentage of matrix in the rock, zones comprising protomylonite, augen mylonite, mylonite and ultramylonite have been identified. The study of microstructures, grain size and crystallographic preferred orientation of quartz c-axis fabric reveals that the rocks of the MCT zone were deformed by a combination of intracrystalline creep (power law creep) and grain boundary migration (sliding super plasticity).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bell, T.H. and Etheridge, M.A. (1973) Microstructures of mylonites and their descriptive terminology. Lithos, v.6, pp.337–348.

    Article  Google Scholar 

  • Berthé, D. Choukroune, P. and Jegouzo, P. (1979) Orthogneiss Mylonite and coaxial deformation of granites: the example of the South Armorican shear zone. Jour. Struct. Geol., v.1, pp.31–42.

    Article  Google Scholar 

  • Bhattacharya, A.R. and Agrawal, K.K. (1985) Mylonites from the Kumaun Lesser Himalaya. Neues Jahtbuch Miner. Abh., v.152, pp.65–77.

    Google Scholar 

  • Bhattacharya, A.R. and Weber, K. (2004) Fabric development during shear deformation in the Main Central Thrust Zone, NW-Himalaya, India. Tectonophysics, v.387, pp.23–46.

    Article  Google Scholar 

  • Bouillier, A.M. and Gueguen, Y. (1975) S-P mylonites: Origin of some mylonites by superplastic flow. Contrib. Mineral. Petrol., v.50, pp.93–104.

    Article  Google Scholar 

  • Etchecopar, A. (1977) A plane kinematic model of progressive deformation in a polycrystalline aggregate. Tectonophysics, v.92, pp.147–170.

    Google Scholar 

  • Fusseis F. and Handy, M.R. (2008) Micromechanisms of shear zone propagation at the brittle-viscous transition Jour. Struct. Geol., v.30, pp. 1242–1253.

    Article  Google Scholar 

  • Gairola, V.K. and Ackermand, D. (1988) Geothermobarometry of the Central Crystallines from the Garhwal Himalaya. Jour. Geol. Soc. India, v.31(2), pp.230–242.

    Google Scholar 

  • Gairola, V.K. and Srivastava, H.B. (1987) Deformational and metamorphic studies in the Central Crystallines around Joshimath, district Chamoli, U.P. In:V.K. Gairola (Ed.), Proc. Nat. Sem. on Tertiary Orogeny in Indian Subcontinent, pp.49–63.

  • Gansser, A. (1964) Geology of the Himalaya. Interscience, New York, 273p.

    Google Scholar 

  • Hull, J., (1988) Thickness-displacement relationships for deformation zones. Jour. Struct. Geol., v.10, pp.244–267.

    Article  Google Scholar 

  • Jain, A.K. (1971) Stratigraphy and tectonics of Lesser Himalayan region of Uttarkashi region, Garhwal Himalaya, U.P. Himalayan Geol., v.1, pp.25–57.

    Google Scholar 

  • Jain, A.K., Singh, Sandeep and Manickavasagam, R.M. (2002) Himalayan Collision Tectonics. Gondwana Res. Group Mem., no.7, pp.1–144

  • Koch Norbert and Masch, Ludwig (1992) Formation of Alpine mylonites and pseudotachylytes at the base of Silveretta nappe, Eastern Alps. Tectonophysics, v.204, pp.289–306.

    Article  Google Scholar 

  • Le Fort, P. (1975) Himalayas: the collided range. Present knowledge of continental arc. Amer. Jour. Sci., v.275A, pp.1–44.

    Google Scholar 

  • Lister, G.S. and Snoke, A.W. (1984) S-C mylonites. Jour. Struct. Geol., v.6, pp.617–638.

    Article  Google Scholar 

  • Means, W.D. (1984) Shear zones of types I and II and their significance for the reconstruction of rock history. Geol. Soc. Am. Bull., Abstract Programs, v.16, p.50.

    Google Scholar 

  • Means, W.D. (1995) Shear zones and rock history. Tectonophysics, v.247, pp.157–160.

    Article  Google Scholar 

  • Metcalfe, R. P. (1993) Pressure, temperature and time constraints on metamorphism across the Main Central Thrust zone and High Himalayan Slab in the Garhwal Himalaya. In: P.G. Trelaor and M.P. Searle, (Eds.), Himalayan Tectonics. Geol. Soc. Spec. Publ., v.74, pp.485–509.

  • Mitra, G. (1984) Brittle to ductile transition due to large strains along the white rock thrust, Wind river mountains, Wyoming. Jour. Struct. Geol., v.6(1–2), pp.51–61.

    Article  Google Scholar 

  • Poirier, J.P. (1985) Creep of Crystals. High temperature deformation process in metals ceramic and minerals. Cambridge University Press. Cambridge, U.K., 260p.

    Google Scholar 

  • Ramsay, J.G. (1980) Shear zone geometry: a review. Jour. Struct. Geol., v.2(1/2), pp.83–99.

    Article  Google Scholar 

  • Schmid, S.M. and Casey, M. (1986) Complete fabric analysis of some commonly observed quartz c-axis fabric patterns. Geophys. Monogr. Am. Geophys. Union (The Paterson vol.), v.36, pp.263–286.

    Google Scholar 

  • Searle, M.P., Metcalf, R.P. Rex, A.J. and Norry, M.J. (1993) Field relations, petrogenesis and emplacement of Bhagirathi Leucogranite, Garhwal Himalaya. In: P.J. Trelaor, and M.P Searle, (Eds) Himalayan Tectonics. Geol. Soc. London Spec. Publ., v.74, pp.429–444.

  • Sibson, R.H. (1977) Fault rocks and Fault mechanism. Jour. Geol. Soc. London, v.133, pp.191–213.

    Article  Google Scholar 

  • Singh, K. and Thakur, V.C. (2001) Microstructure and strain variation across the footwall of the Main Central Thrust Zone, Garhwal Himalaya. Jour. Asian Earth Sci., v.19, pp.17–29.

    Article  Google Scholar 

  • Srivastava, H.B. and Tripathy, N.R. (2005) Shear Zones structures from the Main Central Thrust Zone of the Joshimath area, Garhwal Himalaya. Spec. Publ. Paleont. Soc. India, no.2, pp.53–64.

  • Srivastava, H.B. and Tripathy, N.R. (2007) Geometrical analysis of mesoscopic shear zones in the crystalline rocks of MCT Zone of Garhwal Higher Himalaya. Jour. Asian Earth Sci., v.30, pp.599–612.

    Article  Google Scholar 

  • Takagi Hideo (1986) Implications of mylonitic structures for the geotectonic evolution of the Median Tectonic Line, Central Japan. Jour. of Struc. Geol., v.8(1), pp.3–14.

    Article  Google Scholar 

  • Turner, F.J. and Weiss, L.E. (1963) Structural analysis of Metamorphic Tectonites. McGraw Hill, New York., 545p.

    Google Scholar 

  • Urai, J.L., Means, W.D. and Lister, G.S. (1986) Dynamic recrystallization of minerals. In: B.E. Hobbs and H.C. Heard (Eds.), Mineral and Rock deformations; Laboratory Studies. Geophys. Monogr. Am. Geophysical Union, v.36, pp.161–199.

  • Valdiya, K.S. (1980) The two Intracrustal boundary thrusts of Himalaya. Tectonophysics, v.323, pp.323–348.

    Article  Google Scholar 

  • Virdi, N.S. (1986) Litho-stratigraphy and structure of Central Crystallines in the Alaknanda and Dhauliganga valleys in Garhwal Himalaya, U.P. In: P.S. Saklani (Ed.), Himalayan Thrusts and Associated Rocks. Current Trends in Geology, v.10 pp.155–166.

  • White, S.H., Burrows, S.E., Carreras, J. Shaw, N.D. and Humphreys, F.J. (1980) On mylonites in ductile shear zones. Jour. Struct. Geol., v.2(1/2), pp.175–187.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. B. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, H.B., Srivastava, V. Mylonitic microfabrics from the rocks of MCT zone in Alakhnanda valley, Garhwal Himalaya. J Geol Soc India 75, 152–159 (2010). https://doi.org/10.1007/s12594-010-0004-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-010-0004-1

Keywords

Navigation